Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(17): 176601, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38728716

ABSTRACT

The Yang-Lee edge singularity was originally studied from the standpoint of mathematical foundations of phase transitions. However, direct observation of anomalous scaling with the negative scaling dimension has remained elusive due to an imaginary magnetic field required for the nonunitary criticality. We experimentally implement an imaginary magnetic field with an open quantum system of heralded single photons, directly measure the partition function, and demonstrate the Yang-Lee edge singularity via the quantum-classical correspondence. We also demonstrate unconventional scaling laws for finite-temperature quantum dynamics.

2.
Phys Rev Lett ; 131(15): 150803, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37897782

ABSTRACT

Quantum measurements play a fundamental role in quantum mechanics. Especially, generalized quantum measurements provide a powerful and versatile tool to extract information from quantum systems. However, how to realize them on an arbitrary higher-dimensional quantum system remains a challenging task. Here we propose a simple recipe for the implementation of a general positive-operator valued measurement (POVM) on a higher-dimensional quantum system via a one-dimensional discrete-time quantum walk with a two-dimensional coin. Furthermore, using single photons and linear optics, we realize experimentally a symmetric, informationally complete (SIC) POVM on a three-dimensional system with high fidelity. As an application, we realize a qutrit state tomography with SIC-POVM and confirm that the infidelity scaling achieved by the qutrit SIC-POVM is as good as that based on mutually unbiased bases. Our study paves the way to explore physics and information in higher-dimensional quantum systems and finds applications in various quantum information processing tasks that rely on generalized quantum measurements.

3.
Phys Rev Lett ; 128(5): 050501, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35179941

ABSTRACT

We propose a novel algorithm for quantum spatial search on a star graph using interleaved continuous-time quantum walks and marking oracle queries. Initializing the system in the star's central vertex, we determine the optimal quantum walk times to reach full overlap with the marked state using ⌈(π/4)sqrt[N]-(1/2)⌉ oracle queries, matching the well-known lower bound of Grover's search. We implement the deterministic search in a database of size seven on photonic quantum hardware, and demonstrate the effective scaling of the approach up to size 115. This is the first experimental demonstration of quantum walk-based search on the highly noise-resistant star graph, which provides new evidence for the applications of quantum walk in quantum algorithms and quantum information processing.

4.
Opt Express ; 29(18): 29567-29575, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34615065

ABSTRACT

Uncertainty relations are one of the most important foundations of quantum physics. In the textbook literatures, uncertainty relations usually refer to the preparation uncertainty. Its original formulation based on variances of two observables limits on the ability to prepare an ensemble of quantum systems for which non-commuting observables will have arbitrary uncertainty. The preparation uncertainty relation has been widely investigated. On the other hand, a unitary operator is a fundamental tenet of quantum theory. Every evolution of a closed quantum system is governed by acting unitary operators on the state of the system and the evolution of an open system can be represented by acting unitary operators on an enlarged system consisting of the quantum system as a subsystem. Therefore, naturally, to understand and quantitatively capture the essence of uncertainty relations for unitary operators is important and timely. Here we report an experimental investigation of a set of uncertainty relations for two unitary operators, which are theoretically derived by using a sequence of fine-grained inequalities. We test these uncertainty relations with single photons and interferometric networks. The unitary uncertainty relation is saturated by any pure qubit state. For higher-dimensional states, it is stronger than the best known bound introduced in the previous literatures. The lower bounds of the unitary uncertainty relations can be even further strengthened by the symmetry of permutation. The experimental findings agree with the predictions of quantum theory and respect the new uncertainty relations.

SELECTION OF CITATIONS
SEARCH DETAIL
...