Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Small ; : e2401503, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705860

ABSTRACT

Fungicides have been widely used to protect crops from the disease of pythium aphanidermatum (PA). However, excessive use of synthetic fungicides can lead to fungal pathogens developing microbicide resistance. Recently, biomimetic nano-delivery systems have been used for controlled release, reducing the overuse of fungicides, and thereby protecting the environment. In this paper, inspired by chloroplast membranes, visible light biomimetic channels are constructed by using retinal, the main component of green pigment on chloroplasts in plants, which can achieve the precise controlled release of the model fungicide methylene blue (MB). The experimental results show that the biomimetic channels have good circularity after and before light conditions. In addition, it is also found that the release of MB in visible light by the retinal-modified channels is 8.78 µmol·m-2·h-1, which is four times higher than that in the before light conditions. Furthermore, MB, a bactericide drug model released under visible light, can effectively inhibit the growth of PA, reaching a 97% inhibition effect. The biomimetic nanochannels can realize the controlled release of the fungicide MB, which provides a new way for the treatment of PA on the leaves surface of cucumber, further expanding the application field of biomimetic nanomembrane carrier materials.

2.
J Agric Food Chem ; 72(21): 11900-11916, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38709250

ABSTRACT

Food quality and safety are related to the health and safety of people, and food hazards are important influencing factors affecting food safety. It is strongly necessary to develop food safety rapid detection technology to ensure food safety. As a new detection technology, artificial nanochannel-based electrochemical and other methods have the advantages of being real-time, simple, and sensitive and are widely used in the detection of food hazards. In this paper, we review artificial nanochannel sensors as a new detection technology in food safety for different types of food hazards: biological hazards (bacteria, toxins, viruses) and chemical hazards (heavy metals, organic pollutants, food additives). At the same time, we critically discuss the advantages and disadvantages of artificial nanochannel sensor detection, as well as the restrictions and solutions of detection, and finally look forward to the challenges and development prospects of food safety detection technology based on the limitations of artificial nanochannel detection. We expect to provide a theoretical basis and inspiration for the development of rapid real-time detection technology for food hazards and the production of portable detection equipment in the future.


Subject(s)
Biosensing Techniques , Food Contamination , Food Safety , Food Contamination/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Nanostructures/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation
3.
J Agric Food Chem ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602422

ABSTRACT

In an effort to make pesticide use safer, more efficient, and sustainable, micro-/nanocarriers are increasingly being utilized in agriculture to deliver pesticide-active agents, thereby reducing quantities and improving effectiveness. In the use of nanopesticides, the choice to further design and prepare pesticide stimulus-responsive nanocarriers based on changes in the plant growth environment (light, temperature, pH, enzymes, etc.) has received more and more attention from researchers. Based on this, this paper examines recent advancements in nanomaterials for the design of stimulus-responsive micro-/nanocarriers. It delves into the intricacies of preparation methods, material enhancements, in vivo/ex vivo controlled release, and application techniques for controlled release formulations. The aim is to provide a crucial reference for harnessing nanotechnology to pursue reduced pesticide use and increased efficiency.

4.
Chemistry ; 30(18): e202303742, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38214487

ABSTRACT

Excess fluoride ions in groundwater accumulate through the roots of crops, affecting photosynthesis and inhibiting their growth. Long-term bioaccumulation also threatens human health because it is poorly degradable and toxic. Currently, one of the biggest challenges is developing a unique material that can efficiently remove fluoride ions from the environment. The excellent properties of functionalized pillar[5]arene polymer-filled nanochannel membranes were explored to address this challenge. Constructing a multistage porous nanochannel membrane, consisting of microscale etched nanochannels and nanoscale pillar[5]arene cross-linked polymer voids. A fluoride removal rate of 0.0088 mmol ⋅ L-1 ⋅ min-1 was achieved. Notably, this rate surpassed the rates observed with other control ions by a factor of 6 to 8.8. Our research provides a new direction for developing water fluoride ion removal materials.

5.
ACS Appl Mater Interfaces ; 16(5): 6284-6289, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38259057

ABSTRACT

Proteins are vital components in cells, biological tissues, and organs, playing a pivotal role in growth and developmental processes in living organisms. Cytochrome C (Cyt C) is a class of heme proteins found in almost all life and is involved in cellular energy metabolic processes such as respiration, mainly as electron carriers or terminal reductases. It binds cardiolipin in the inner mitochondrial membrane, leading to apoptosis. It is a challenge to design a simple and effective artificial system to mimic the complex Cyt C biological transport process. In this paper, an asymmetric biomimetic pH-driven protein gate is described by introducing arginine (Arg) at one end of an hourglass-shaped nanochannel. The nanochannel shows a sensitive protonation-driven protein gate that can be "off" at pH = 7 and "on" at pH = 2. Further studies show that differences in the binding of Arg and Cyt C at different levels of protonation lead to different switching behaviors within the nanochannels, which in turn lead to different surface charges within the nanochannels. It can be used for detecting Cyt C and as an excellent and robust gate for developing integrated circuits and nanoelectronic logic devices.


Subject(s)
Biomimetic Materials , Cytochromes c , Biomimetic Materials/chemistry , Biomimetics , Hydrogen-Ion Concentration
6.
ACS Nano ; 17(19): 19305-19312, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37768005

ABSTRACT

The conspicuous surface activity and exceptional chemical stability of perfluorooctanoic acid, commonly referred to as PFOA, have led to its extensive utilization across a broad spectrum of industrial and commercial products. Nonetheless, significant concerns have arisen regarding the environmental presence of PFOAs, driven by their recognized persistence, bioaccumulative nature, and potential human health risks. In the realm of sustainable agriculture, a pivotal challenge revolves around the development of specialized materials capable of effectively and selectively eliminating PFOA from the environment. This study proposes harnessing the exceptional properties of a pillar[5]arene polymer to construct a nanochannel membrane filled with tryptophan-alanine dipeptide pillar[5]arene polymer. Through the functionalization of these nanochannel membranes, we achieved a PFOA removal rate of 0.01 mmol L-1 min-1, surpassing the rates observed with other control chemicals by a factor of 4.5-15. The research on PFOA removal materials has been boosted because of the creation of this highly selective PFOA removal membrane.

7.
Small ; 19(15): e2205488, 2023 04.
Article in English | MEDLINE | ID: mdl-36617514

ABSTRACT

Achieving fast transmembrane transmission of molecules in organisms is a challenging problem. Inspired by the transport of Dopmine (DA) in organisms, the DA transporter (DAT) binds to DA in a way that has a ring recognition (the recognition group is the tryptophan group). Herein, D-Tryptophan-pillar[5]arene (D-Trp-P5) functionalized conical nanochannel is constructed to achieve fast transmission of DA. The D-Trp-P5 functionalized nanochannel enables specific wettability recognition of DA molecules and has great cycle stability. With the controlling of voltage to wettability, the transport flux of DA is up to 499.73 nmol cm-2 h-1 at -6 V, 16.88 times higher than that under positive voltages. In response to these results, a high-throughput DA transport device based on controlled electricity-wettability is provided.


Subject(s)
Dopamine , Tryptophan , Wettability , Electricity
8.
Front Genet ; 13: 857095, 2022.
Article in English | MEDLINE | ID: mdl-35547258

ABSTRACT

Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder that canonically affects the ocular, skeletal, and cardiovascular system, in which aortic tear and rupture is the leading cause of death for MFS patients. Genetically, MFS is primarily associated with fibrillin-1 (FBN1) pathogenic variants. However, the disease-causing variant in approximately 10% of patients cannot be identified, partly due to some cryptic mutations that may be missed using routine exonic sequencing, such as non-coding intronic variants that affects the RNA splicing process. We present a 32-year female with typical MFS systemic presentation that reached to a clinical diagnosis according to the revised Ghent nosology. We performed whole-exome sequencing (WES) but the report failed to identify known causal variants when analyzing the exonic sequence. However, further investigation on the exon/intron boundaries of the WES report revealed a candidate intronic variant of the fibrillin 1 (FBN1) gene (c.248-3 C>G) that predicted to affect the RNA splicing process. We conducted minigene splicing analyses and demonstrated that the c.248-3 C>G variant abolished the canonical splicing site of intron 3, leading to activation of two cryptic splicing sites and causing insertion (c.248-1_248-2insAG and c.248-1_248-282ins). Our study not only characterizes an intronic variant to the mutational spectrum of the FBN1 gene in MFS and its aberrant effect on splicing, but highlights the importance to not neglect the exon/intron boundaries when reporting and assessing WES results. We point out the need of conducting functional analysis to verify the pathogenicity of intronic mutation, and the opportunity to re-consider the standard diagnostic approaches in cases of clinically diagnosed MFS with normal or variant of unknown significance genetic results.

9.
Anal Chem ; 94(15): 6065-6070, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35384661

ABSTRACT

High flux microchannel membranes have the potential for large scale separations. However, it is prevented by poor enantioselectivity. Therefore, the development of a high-enantioselective microchannel membrane is of great importance for large scale chiral separations. In this work, chiral gold nanoparticles are incorporated into the microchannel membrane to astringe the large pores and improve the enantioselectivity. Here, the gold nanoparticles are functionalized by l-phenylalanine-derived pil-lararenes (l-Phe-P6@AuNPs) as the chiral receptor of R-phenylglycinol (R-PGC) over its enantiomer. This chiral Au NPs coated microchannel membrane (l-Phe-P6@AuNPs microchannel) shows a selectivity of 5.40 for R-PGC and a flux of 140.35 nmol·cm-2·h-1, where the enantioselectivity is improved, ensuring its flux. Compared with the enantioselectivity and flux of nanochannel membranes reported in literatures, the l-Phe-P6@AuNPs microchannel has the advantage for enantioselectivity and flux for chiral separation.


Subject(s)
Gold , Metal Nanoparticles , Phenylalanine , Stereoisomerism
10.
Analyst ; 147(9): 1803-1807, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35357379

ABSTRACT

Chirality is an important property, especially for chiral drug enantiomers with huge differences in pharmacology and toxicity. Chiral recognition of drug enantiomers is the first step to understanding the physiological phenomenon and ensuring medical safety. To efficiently identify and isolate these chiral drugs, we prepared a nanochannel. Here, a chiral sensor was fabricated by introducing the host-guest system of pillar[5]arene (WAP5) and phenethylamine into solid-state nanochannels. The chiral guest R-phenethylamine (R-PEA) induced the chirality of the host-guest system and amplified the chiral selectivity for ibuprofen enantiomers in the host-guest-based nanochannels, which was significantly greater than that in the aqueous phase or the R-PEA modified nanochannels. This study provides a strategy to fabricate highly enantioselective nanosensors for chiral drugs.


Subject(s)
Ibuprofen , Phenethylamines , Stereoisomerism
11.
ACS Appl Mater Interfaces ; 9(31): 26088-26095, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28715170

ABSTRACT

Heteroatom-doped hierarchical porous carbon materials derived from the potential precursors and prepared by a facile, effective, and low-pollution strategy have recently been particularly concerned in different research fields. In this study, the interconnected nitrogen/sulfur-codoped hierarchically porous carbon materials have been successfully obtained via one-step carbonization of the self-assembly of [Phne][HSO4] (a protic ionic liquid originated from dilute sulfuric acid and phenothiazine by a straightforward acid-base neutralization) and the double soft-template of OP-10 and F-127. During carbonization process, OP-10 as macroporous template and F-127 as mesoporous template were removed, while [Phne][HSO4] not only could be used as carbon, nitrogen, and sulfur source, but also as a pore forming agent to create micropores. The acquired carbon materials for supercapacitor not only hold a large specific capacitance of 302 F g-1 even at 1.0 A g-1, but also fine rate property with 169 F g-1 at 10 A g-1 and excellent capacitance retention of nearly 100% over 5000 circulations in 6 M KOH electrolyte. Furthermore, carbon materials also present eximious rate performance with 70% in 1 M Na2SO4 electrolyte.

12.
J Hazard Mater ; 337: 27-33, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28501641

ABSTRACT

A novel three-dimensional crumpled graphene oxide/cellulose nanocrystals (GO/CNCs) composite was successfully synthesized and firstly used as adsorbent for the removal of ionic liquid [BMIM][Cl] from aqueous solution. The 3D crumpled structure and abundant oxygen of the functional groups on GO/CNCs composite can provide more chance for the sorption of [BMIM][Cl] compared with CNCs and GO, respectively. Therefore, a series of batch experiments were carried out to evaluate the adsorptive property of 3D GO/CNCs composite towards [BMIM][Cl], such as the GO mass content, the pH value and contact time. The results showed that pseudo-second-order kinetic model and Eovlich model were well fitted with the sorption kinetic. The isotherm adsorption data indicated that it was better described by Langmuir model, with the maximum sorption capacity of 0.455mmol/g. This work provides a facile method for the preparation of 3D structure adsorbent from graphene oxide and cellulose nanocrystals which has high adsorption capacity of [BMIM][Cl] in aqueous solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...