Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 358
Filter
1.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38850218

ABSTRACT

Closed head injury is a prevalent form of traumatic brain injury with poorly understood effects on cortical neural circuits. Given the emotional and behavioral impairments linked to closed head injury, it is vital to uncover brain functional deficits and their driving mechanisms. In this study, we employed a robust viral tracing technique to identify the alteration of the neural pathway connecting the medial prefrontal cortex to the basolateral amygdala, and we observed the disruptions in neuronal projections between the medial prefrontal cortex and the basolateral amygdala following closed head injury. Remarkably, our results highlight that ZL006, an inhibitor targeting PSD-95/nNOS interaction, stands out for its ability to selectively reverse these aberrations. Specifically, ZL006 effectively mitigates the disruptions in neuronal projections from the medial prefrontal cortex to basolateral amygdala induced by closed head injury. Furthermore, using chemogenetic approaches, we elucidate that activating the medial prefrontal cortex projections to the basolateral amygdala circuit produces anxiolytic effects, aligning with the therapeutic potential of ZL006. Additionally, ZL006 administration effectively mitigates astrocyte activation, leading to the restoration of medial prefrontal cortex glutamatergic neuron activity. Moreover, in the context of attenuating anxiety-like behaviors through ZL006 treatment, we observe a reduction in closed head injury-induced astrocyte engulfment, which may correlate with the observed decrease in dendritic spine density of medial prefrontal cortex glutamatergic neurons.


Subject(s)
Amygdala , Anxiety , Head Injuries, Closed , Prefrontal Cortex , Animals , Prefrontal Cortex/drug effects , Male , Head Injuries, Closed/complications , Anxiety/drug therapy , Amygdala/drug effects , Mice , Neural Pathways/drug effects , Mice, Inbred C57BL , Disks Large Homolog 4 Protein/metabolism
2.
Acta Pharmacol Sin ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789494

ABSTRACT

Excessive dietary calories lead to systemic metabolic disorders, disturb hepatic lipid metabolism, and aggravate nonalcoholic steatohepatitis (NASH). Bile acids (BAs) play key roles in regulating nutrition absorption and systemic energy homeostasis. Resmetirom is a selective thyroid hormone receptor ß (THRß) agonist and the first approved drug for NASH treatment. It is well known that the THRß activation could promote intrahepatic lipid catabolism and improve mitochondrial function, however, its effects on intestinal lipid absorption and BA compositions remain unknown. In the present study, the choline-deficient, L-amino acid defined, high-fat diet (CDAHFD) and high-fat diet plus CCl4 (HFD+CCl4)-induced NASH mice were used to evaluate the effects of resmetirom on lipid and BA composition. We showed that resmetirom administration (10 mg·kg-1·d-1, i.g.) significantly altered hepatic lipid composition, especially reduced the C18:2 fatty acyl chain-containing triglyceride (TG) and phosphatidylcholine (PC) in the two NASH mouse models, suggesting that THRß activation inhibited intestinal lipid absorption since C18:2 fatty acid could be obtained only from diet. Targeted analysis of BAs showed that resmetirom treatment markedly reduced the hepatic and intestinal 12-OH to non-12-OH BAs ratio by suppressing cytochrome P450 8B1 (CYP8B1) expression in both NASH mouse models. The direct inhibition by resmetirom on intestinal lipid absorption was further verified by the BODIPY gavage and the oral fat tolerance test. In addition, disturbance of the altered BA profiles by exogenous cholic acid (CA) supplementation abolished the inhibitory effects of resmetirom on intestinal lipid absorption in both normal and CDAHFD-fed mice, suggesting that resmetirom inhibited intestinal lipid absorption by reducing 12-OH BAs content. In conclusion, we discovered a novel mechanism of THRß agonists on NASH treatment by inhibiting intestinal lipid absorption through remodeling BAs composition, which highlights the multiple regulation of THRß activation on lipid metabolism and extends the current knowledge on the action mechanisms of THRß agonists in NASH treatment.

3.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746128

ABSTRACT

The advent of long-read single-cell transcriptome sequencing (lr-scRNA-Seq) represents a significant leap forward in single-cell genomics. With the recent introduction of R10 flowcells by Oxford Nanopore, we propose that previous computational methods designed to handle high sequencing error rates are no longer relevant, and that the prevailing approach using short reads to compile "barcode space" (candidate barcode list) to de-multiplex long reads are no longer necessary. Instead, computational methods should now shift focus on harnessing the unique benefits of long reads to analyze transcriptome complexity. In this context, we introduce a comprehensive suite of computational methods named Single-Cell Omics for Transcriptome CHaracterization (SCOTCH). Our method is compatible with the single-cell library preparation platform from both 10X Genomics and Parse Biosciences, facilitating the analysis of special cell populations, such as neurons, hepatocytes and developing cardiomyocytes. We specifically re-formulated the transcript mapping problem with a compatibility matrix and addressed the multiple-mapping issue using probabilistic inference, which allows the discovery of novel isoforms as well as the detection of differential isoform usage between cell populations. We evaluated SCOTCH through analysis of real data across different combinations of single-cell libraries and sequencing technologies (10X + Illumina, Parse + Illumina, 10X + Nanopore_R9, 10X + Nanopore_R10, Parse + Nanopore_R10), and showed its ability to infer novel biological insights on cell type-specific isoform expression. These datasets enhance the availability of publicly available data for continued development of computational approaches. In summary, SCOTCH allows extraction of more biological insights from the new advancements in single-cell library construction and sequencing technologies, facilitating the examination of transcriptome complexity at the single-cell level.

4.
CNS Drugs ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806883

ABSTRACT

BACKGROUND AND PURPOSE: Sex is associated with clinical outcome in stroke. The present study aimed to determine the effect of sex on efficacy of dual antiplatelet (DAPT) versus alteplase in ischemic stroke based on Antiplatelet versus recombinant tissue plasminogen activator (R-tPA) for Acute Mild Ischemic Stroke (ARAMIS) trial. METHODS: In this secondary analysis of the ARAMIS study, eligible patients aged 18 years or older with minor nondisabling stroke who received dual antiplatelet therapy or intravenous alteplase within 4.5 h of stroke onset were divided into two groups: men and women. The primary endpoint was an excellent functional outcome, defined as a modified Rankin Scale (mRS) 0-1 at 90 days. Binary logistic regression analyses and generalized linear models were used. RESULTS: Of the 719 patients who completed the study, 31% (223) were women, and 69% (496) were men. There were no significant sex differences in excellent functional outcome (unadjusted p = 0.304 for men and p = 0.993 for women; adjusted p = 0.376 for men and p = 0.918 for women) and favorable functional outcome (mRS score of 0-2; unadjusted p = 0.968 for men and p = 0.881 for women; adjusted p = 0.824 for men and p = 0.881 for women). But for the secondary outcomes, compared with alteplase, DAPT was associated with a significantly decreased proportion of early neurological deterioration within 24 h in men {unadjusted odds ratio [OR] = 0.440 [95% confidence interval (CI), 0.221-0.878]; p = 0.020; adjusted OR = 0.436 [95% CI, 0.216-0.877]; p = 0.020}, but not in women [unadjusted OR = 0.636 (95% CI, 0.175-2.319), p = 0.490; adjusted OR = 0.687 (95% CI, 0.181-2.609), p = 0.581]. For the safety outcomes, compared with the DAPT group, alteplase was associated with a significantly increased proportion of any bleeding events in men [unadjusted OR = 3.110 (95% CI, 1.103-8.770); p = 0.032], but not in women [unadjusted OR = 5.333 (95% CI, 0.613-46.407), p = 0.129; adjusted OR = 5.394 (95% CI, 0.592-49.112), p = 0.135]. CONCLUSION: Sex did not influence the effect of dual antiplatelet therapy versus intravenous alteplase in minor nondisabling stroke, but more early neurological deterioration and bleeding events occurred in men who received alteplase.

5.
Acad Radiol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38749868

ABSTRACT

RATIONALE AND OBJECTIVES: The proliferative nature of hepatocellular carcinoma (HCC) is closely related to early recurrence following radical resection. This study develops and validates a deep learning (DL) prediction model to distinguish between proliferative and non-proliferative HCCs using dynamic contrast-enhanced MRI (DCE-MRI), aiming to refine preoperative assessments and optimize treatment strategies by assessing early recurrence risk. MATERIALS AND METHODS: In this retrospective study, 355 HCC patients from two Chinese medical centers (April 2018-February 2023) who underwent radical resection were included. Patient data were collected from medical records, imaging databases, and pathology reports. The cohort was divided into a training set (n = 251), an internal test set (n = 62), and external test sets (n = 42). A DL model was developed using DCE-MRI images of primary tumors. Clinical and radiological models were generated from their respective features, and fusion strategies were employed for combined model development. The discriminative abilities of the clinical, radiological, DL, and combined models were extensively analyzed. The performances of these models were evaluated against pathological diagnoses, with independent and fusion DL-based models validated for clinical utility in predicting early recurrence. RESULTS: The DL model, using DCE-MRI, outperformed clinical and radiological feature-based models in predicting proliferative HCC. The area under the curve (AUC) for the DL model was 0.98, 0.89, and 0.83 in the training, internal validation, and external validation sets, respectively. The AUCs for the combined DL and clinical feature models were 0.99, 0.86, and 0.83 in these sets, while the AUCs for the combined DL, clinical, and radiological model were 0.99, 0.87, and 0.8, respectively. Among models predicting early recurrence, the DL plus clinical features model showed superior performance. CONCLUSION: The DL-based DCE-MRI model demonstrated robust performance in predicting proliferative HCC and stratifying patient risk for early postoperative recurrence. As a non-invasive tool, it shows promise in enhancing decision-making for individualized HCC management strategies.

6.
Brain Behav Immun ; 119: 767-780, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677625

ABSTRACT

The co-occurrence and familial clustering of neurodevelopmental disorders and immune disorders suggest shared genetic risk factors. Based on genome-wide association summary statistics from five neurodevelopmental disorders and four immune disorders, we conducted genome-wide, local genetic correlation and polygenic overlap analysis. We further performed a cross-trait GWAS meta-analysis. Pleotropic loci shared between the two categories of diseases were mapped to candidate genes using multiple algorithms and approaches. Significant genetic correlations were observed between neurodevelopmental disorders and immune disorders, including both positive and negative correlations. Neurodevelopmental disorders exhibited higher polygenicity compared to immune disorders. Around 50%-90% of genetic variants of the immune disorders were shared with neurodevelopmental disorders. The cross-trait meta-analysis revealed 154 genome-wide significant loci, including 8 novel pleiotropic loci. Significant associations were observed for 30 loci with both types of diseases. Pathway analysis on the candidate genes at these loci revealed common pathways shared by the two types of diseases, including neural signaling, inflammatory response, and PI3K-Akt signaling pathway. In addition, 26 of the 30 lead SNPs were associated with blood cell traits. Neurodevelopmental disorders exhibit complex polygenic architecture, with a subset of individuals being at a heightened genetic risk for both neurodevelopmental and immune disorders. The identification of pleiotropic loci has important implications for exploring opportunities for drug repurposing, enabling more accurate patient stratification, and advancing genomics-informed precision in the medical field of neurodevelopmental disorders.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Immune System Diseases , Multifactorial Inheritance , Neurodevelopmental Disorders , Polymorphism, Single Nucleotide , Humans , Neurodevelopmental Disorders/genetics , Immune System Diseases/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Multifactorial Inheritance/genetics
8.
J Med Genet ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443156

ABSTRACT

BACKGROUND: Epigenetics makes substantial contribution to the aetiology of autism spectrum disorder (ASD) and may harbour a unique opportunity to prevent the development of ASD. We aimed to identify novel epigenetic genes involved in ASD aetiology. METHODS: Trio-based whole exome sequencing was conducted on ASD families. Genome editing technique was used to knock out the candidate causal gene in a relevant cell line. ATAC-seq, ChIP-seq and RNA-seq were performed to investigate the functional impact of knockout (KO) or mutation in the candidate gene. RESULTS: We identified a novel candidate gene NASP (nuclear autoantigenic sperm protein) for epigenetic dysregulation in ASD in a Chinese nuclear family including one proband with autism and comorbid atopic disease. The de novo likely gene disruptive variant tNASP(Q289X) subjects the expression of tNASP to nonsense-mediated decay. tNASP KO increases chromatin accessibility, promotes the active promoter state of genes enriched in synaptic signalling and leads to upregulated expression of genes in the neural signalling and immune signalling pathways. Compared with wild-type tNASP, tNASP(Q289X) enhances chromatin accessibility of the genes with enriched expression in the brain. RNA-seq revealed that genes involved in neural and immune signalling are affected by the tNASP mutation, consistent with the phenotypic impact and molecular effects of nasp-1 mutations in Caenorhabditis elegans. Two additional patients with ASD were found carrying deletion or deleterious mutation in the NASP gene. CONCLUSION: We identified novel epigenetic mechanisms mediated by tNASP which may contribute to the pathogenesis of ASD and its immune comorbidity.

9.
Cancer Lett ; 588: 216776, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38432581

ABSTRACT

Due to the limited effectiveness of current treatments, the survival rate of patients with metastatic castration-resistant prostate cancer (mCRPC) is significantly reduced. Consequently, it is imperative to identify novel therapeutic targets for managing these patients. Since the invasive ability of cells is crucial for establishing and maintaining metastasis, the aim of this study was to identify the essential regulators of invasive abilities of mCRPC cells by conducting two independent high-throughput CRISPR/Cas9 screenings. Furthermore, some of the top hits were validated using siRNA technology, with protein arginine methyltransferase 7 (PRMT7) emerging as the most promising candidate. We demonstrated that its inhibition or depletion via genetic or pharmacological approaches significantly reduces invasive, migratory and proliferative abilities of mCRPC cells in vitro. Moreover, we confirmed that PRMT7 ablation reduces cell dissemination in chicken chorioallantoic membrane and mouse xenograft assays. Molecularly, PRMT7 reprograms the expression of several adhesion molecules by methylating various transcription factors, such as FoxK1, resulting in the loss of adhesion from the primary tumor and increased motility of mCRPC cells. Furthermore, PRMT7 higher expression correlates with tumor aggressivity and poor overall survival in prostate cancer patients. Thus, this study demonstrates that PRMT7 is a potential therapeutic target and potential biomarker for mPCa.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Protein-Arginine N-Methyltransferases , Male , Animals , Mice , Humans , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , CRISPR-Cas Systems , Genes, Essential , Early Detection of Cancer
10.
Front Plant Sci ; 15: 1333207, 2024.
Article in English | MEDLINE | ID: mdl-38344186

ABSTRACT

With the rapid development of the livestock industry, finding new sources of feed has become a critical issue that needs to be addressed urgently. China is one of the top five sunflower producers in the world and generates a massive amount of sunflower stalks annually, yet this resource has not been effectively utilized. Therefore, in order to tap into the potential of sunflower stalks for animal feed, it is essential to explore and develop efficient methods for their utilization.In this study, various proportions of alfalfa and sunflower straw were co-ensiled with the following mixing ratios: 0:10, 2:8, 4:6, 5:5, 6:4, and 8:2, denoted as A0S10, A2S8, A4S6, A5S5, A6S4, and A8S2, respectively. The nutrient composition, fermentation quality, microbial quantity, microbial diversity, and broad-spectrum metabolomics on the 60th day were assessed. The results showed that the treatment groups with more sunflower straw added (A2S8, A4S6) could start fermentation earlier. On the first day of fermentation, Weissella spp.dominated overwhelmingly in these two groups. At the same time, in the early stage of fermentation, the pH in these two groups dropped rapidly, which could effectively reduce the loss of nutrients in the early stage of fermentation.In the later fermentation period, a declining trend in acetic acid levels was observed in A0S10, A2S8, and A4S6, while no butyric acid production was detected in A0S10 and A2S8 throughout the process. In A4S6, butyric acid production was observed only after 30 days of fermentation. From the perspective of metabolites, compared with sunflower ensiling alone, many bioactive substances such as flavonoids, alkaloids, and terpenes are upregulated in mixed ensiling.

11.
J Allergy Clin Immunol ; 153(6): 1668-1680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38191060

ABSTRACT

BACKGROUND: CLEC16A intron 19 has been identified as a candidate locus for common variable immunodeficiency (CVID). OBJECTIVES: This study sought to elucidate the molecular mechanism by which variants at the CLEC16A intronic locus may contribute to the pathogenesis of CVID. METHODS: The investigators performed fine-mapping of the CLEC16A locus in a CVID cohort, then deleted the candidate functional SNP in T-cell lines by the CRISPR-Cas9 technique and conducted RNA-sequencing to identify target gene(s). The interactions between the CLEC16A locus and its target genes were identified using circular chromosome conformation capture. The transcription factor complexes mediating the chromatin interactions were determined by proteomic approach. The molecular pathways regulated by the CLEC16A locus were examined by RNA-sequencing and reverse phase protein array. RESULTS: This study showed that the CLEC16A locus is an enhancer regulating expression of multiple target genes including a distant gene ATF7IP2 through chromatin interactions. Distinct transcription factor complexes mediate the chromatin interactions in an allele-specific manner. Disruption of the CLEC16A locus affects the AKT signaling pathway, as well as the molecular response of CD4+ T cells to immune stimulation. CONCLUSIONS: Through multiomics and targeted experimental approaches, this study elucidated the underlying target genes and signaling pathways involved in the genetic association of CLEC16A with CVID, and highlighted plausible molecular targets for developing novel therapeutics.


Subject(s)
Common Variable Immunodeficiency , Introns , Lectins, C-Type , Monosaccharide Transport Proteins , Humans , Lectins, C-Type/genetics , Introns/genetics , Monosaccharide Transport Proteins/genetics , Common Variable Immunodeficiency/genetics , Common Variable Immunodeficiency/immunology , Polymorphism, Single Nucleotide , Gene Expression Regulation , Female , Male , Signal Transduction/genetics , CD4-Positive T-Lymphocytes/immunology , Adult
13.
Stroke Vasc Neurol ; 9(1): 75-81, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-37220998

ABSTRACT

BACKGROUND: Perforating artery territorial infarction (PAI) caused by branch atheromatous disease (BAD) is prone to recurrence and early progression without an effective and well-documented antiplatelet treatment regimen. Tirofiban, an adjunctive antiplatelet agent, has shown great potential to treat acute ischaemic stroke. However, whether the combination of tirofiban and aspirin can improve the prognosis of PAI remains unclear. AIM: To explore an effective and safe antiplatelet regimen for reducing the risk of recurrence and early neurological deterioration (END) in PAI caused by BAD by comparing the tirofiban and aspirin combination with placebo and aspirin combination. METHODS: Tirofiban combined with Aspirin in the Treatment of Acute Penetrating Artery Territory Infarction (STRATEGY) trial is an ongoing multicentre, randomised, placebo-controlled trial in China. Eligible patients shall be randomly assigned to receive standard aspirin with tirofiban or placebo on the first day and standard aspirin from days 2 to 90. The primary endpoint is a new stroke or END within 90 days. The primary safety endpoint is severe or moderate bleeding within 90 days. DISCUSSION: The STRATEGY trial will assess whether tirofiban combined with aspirin is effective and safe in preventing recurrence and END in patients with PAI. TRIAL REGISTRATION NUMBER: NCT05310968.


Subject(s)
Brain Ischemia , Stroke , Humans , Aspirin/adverse effects , Tirofiban/adverse effects , Stroke/prevention & control , Brain Ischemia/drug therapy , Infarction/complications , Arteries , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
14.
Stem Cells ; 42(1): 1-12, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37934608

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity and the dynamics of gene expression, bearing profound significance in stem cell research. Depending on the starting materials used for analysis, scRNA-seq encompasses scRNA-seq and single-nucleus RNA sequencing (snRNA-seq). scRNA-seq excels in capturing cellular heterogeneity and characterizing rare cell populations within complex tissues, while snRNA-seq is advantageous in situations where intact cell dissociation is challenging or undesirable (eg, epigenomic studies). A number of scRNA-seq technologies have been developed as of late, including but not limited to droplet-based, plate-based, hydrogel-based, and spatial transcriptomics. The number of cells, sequencing depth, and sequencing length in scRNA-seq can vary across different studies. Addressing current technical challenges will drive the future of scRNA-seq, leading to more comprehensive and precise insights into cellular biology and disease mechanisms informing therapeutic interventions.


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , Sequence Analysis, RNA , RNA, Small Nuclear , Base Sequence
16.
J Magn Reson Imaging ; 59(5): 1569-1579, 2024 May.
Article in English | MEDLINE | ID: mdl-37578214

ABSTRACT

BACKGROUND: Trans-stenotic pressure gradient (TPG) measurement is essential for idiopathic intracranial hypertension (IIH) patients with transverse sinus (TS) stenosis. Four-D flow MRI may provide a noninvasive imaging method for differentiation of IIH patients with different TPG. PURPOSE: To investigate the associations between 4D flow parameters and TPG, and to evaluate the diagnostic performance of 4D flow parameters in differentiating patients with high TPG (GroupHP) from low TPG (GroupLP). STUDY TYPE: Prospective. POPULATION: 31 IIH patients with TS stenosis (age, 38 ± 12 years; 23 females) and 5 healthy volunteers (age, 25 ± 1 years; 2 females). FIELD STRENGTH/SEQUENCE: 3T, 3D phase contrast MR venography, and gradient recalled echo 4D flow sequences. ASSESSMENT: Scan-rescan reproducibility of 4D flow parameters were performed. The correlation between TPG and flow parameters was analyzed. The netflow and velocity difference between inflow plane, outflow plane, and the stenosis plane were calculated and compared between GroupHP and GroupLP. STATISTICAL TESTS: Pearson's correlation or Spearman's rank correlation coefficient, Independent samples t-test or Wilcoxon rank-sum test, Intra-class correlation coefficient (ICC), Bland-Altman analyses, Receiver operating characteristic curves. A P value <0.05 was considered significant. RESULTS: Significant correlations were found between TPG and netflow parameters including Favg,out-s, Favg,in-s, Fmax,out-s, and Fmax,in-s (r = 0.525-0.565). Significant differences were found in Favg,out-s, Fmax,out-s, Favg,in-s, and Fmax,in-s between GroupHP and GroupLP. Using the cut-off value of 2.19 mL/sec, the Favg,out-s showed good estimate performance in distinguishing GroupHP from GroupLP (AUC = 0.856). The ICC (ranged 0.905-0.948) and Bland-Altman plots indicated good scan-rescan reproducibility. DATA CONCLUSIONS: 4D flow MRI derived flow parameters showed good correlations with TPG in IIH patients with TS stenosis. Netflow difference between outflow and stenosis location at TS shows the good performance in differentiating GroupHP and GroupLP cases. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Pseudotumor Cerebri , Female , Humans , Adult , Middle Aged , Young Adult , Constriction, Pathologic/diagnostic imaging , Pseudotumor Cerebri/diagnostic imaging , Reproducibility of Results , Prospective Studies , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Hemodynamics
17.
Transl Res ; 266: 49-56, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37989391

ABSTRACT

BACKGROUND: Patients with birth defects (BD) exhibit an elevated risk of cancer. We aimed to investigate the potential link between pediatric cancers and BDs, exploring the hypothesis of shared genetic defects contributing to the coexistence of these conditions. METHODS: This study included 1454 probands with BDs (704 females and 750 males), including 619 (42.3%) with and 845 (57.7%) without co-occurrence of pediatric onset cancers. Whole genome sequencing (WGS) was done at 30X coverage through the Kids First/Gabriella Miller X01 Program. RESULTS: 8211 CNV loci were called from the 1454 unrelated individuals. 191 CNV loci classified as pathogenic/likely pathogenic (P/LP) were identified in 309 (21.3%) patients, with 124 (40.1%) of these patients having pediatric onset cancers. The most common group of CNVs are pathogenic deletions covering the region ChrX:52,863,011-55,652,521, seen in 162 patients including 17 males. Large recurrent P/LP duplications >5MB were detected in 33 patients. CONCLUSIONS: This study revealed that P/LP CNVs were common in a large cohort of BD patients with high rate of pediatric cancers. We present a comprehensive spectrum of P/LP CNVs in patients with BDs and various cancers. Notably, deletions involving E2F target genes and genes implicated in mitotic spindle assembly and G2/M checkpoint were identified, potentially disrupting cell-cycle progression and providing mechanistic insights into the concurrent occurrence of BDs and cancers.


Subject(s)
DNA Copy Number Variations , Neoplasms , Male , Child , Female , Humans , DNA Copy Number Variations/genetics , Whole Genome Sequencing , Neoplasms/epidemiology , Neoplasms/genetics , Comorbidity
18.
Food Funct ; 15(2): 716-731, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38113052

ABSTRACT

The cholesterol metabolism and homeostasis of adrenal are important for steroidogenesis. Our previous studies found that prenatal caffeine exposure (PCE) can inhibit adrenal steroidogenesis in offspring, but whether the mechanism is related to local imbalance of cholesterol metabolism remains unknown. Here, we found that PCE inhibited adrenal steroidogenesis and increased the expression of cell pyroptosis and inflammatory-related indicators (NLRP3, caspase-1 and IL-1ß) in female adult offspring rats, and at the same time, the cholesterol levels in serum and adrenal gland also significantly increased. In vitro, the high level of cholesterol could inhibit adrenal corticosteroid synthesis through pyroptosis and an inflammatory response. It suggested that the low adrenal steroidogenesis in PCE female adult offspring is related to local cholesterol accumulation-mediated pyroptosis and inflammation. Furthermore, dating back to the intrauterine period, PCE increased the serum CORT level in female fetal rats, and increased the expression of the adrenal cholesterol intake gene SR-B1, which persisted after birth and even into adulthood. At the cellular level, silencing SR-B1 could reverse the increase of intracellular cholesterol content caused by high levels of cortisol in NCI-H295R cells. Finally, we confirmed that high concentrations of glucocorticoids increased the expression and H3K14ac level of the promoter region in SR-B1 by upregulating the GR/SREBP1/p300 pathway in vivo and in vitro. In conclusion, we clarified that the high-expression programming of SR-B1 mediates adrenal dysfunction in PCE female offspring and its cholesterol accumulation mechanism, which provided a favorable basis for finding novel targets to prevent and treat fetal-originated diseases.


Subject(s)
Caffeine , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Rats , Female , Animals , Caffeine/adverse effects , Rats, Wistar , Prenatal Exposure Delayed Effects/metabolism , Cholesterol , Hydrocortisone
19.
Article in English | MEDLINE | ID: mdl-38072244

ABSTRACT

OBJECTIVE: Accumulative evidence indicates a critical role of mitochondrial function in autism spectrum disorders (ASD), implying that ASD risk may be linked to mitochondrial dysfunction due to DNA (mtDNA) variations. Although a few studies have explored the association between mtDNA variations and ASD, the role of mtDNA in ASD is still unclear. Here, we aimed to investigate whether mitochondrial DNA haplogroups are associated with the risk of ASD. METHOD: Two European cohorts and an Ashkenazi Jewish (AJ) cohort were analyzed, including 2,062 ASD patients in comparison with 4,632 healthy controls. DNA samples were genotyped using Illumina HumanHap550/610 and Illumina 1M arrays, inclusive of mitochondrial markers. Mitochondrial DNA (mtDNA) haplogroups were identified from genotyping data using HaploGrep2. A mitochondrial genome imputation pipeline was established to detect mtDNA variants. We conducted a case-control study to investigate potential associations of mtDNA haplogroups and variants with the susceptibility to ASD. RESULTS: We observed that the ancient adaptive mtDNA haplogroup K was significantly associated with decreased risk of ASD by the investigation of 2 European cohorts including a total of 2,006 cases and 4,435 controls (odds ratio = 0.64, P=1.79 × 10-5), and we replicated this association in an Ashkenazi Jewish (AJ) cohort including 56 cases and 197 controls (odds ratio = 0.35, P = 9.46 × 10-3). Moreover, we demonstrate that the mtDNA variants rs28358571, rs28358584, and rs28358280 are significantly associated with ASD risk. Further expression quantitative trait loci (eQTLs) analysis indicated that the rs28358584 and rs28358280 genotypes are associated with expression levels of nearby genes in brain tissues, suggesting those mtDNA variants may confer risk for ASD via regulation of expression levels of genes encoded by the mitochondrial genome. CONCLUSION: This study helps to shed light on the contribution of mitochondria in ASD and provides new insights into the genetic mechanism underlying ASD, suggesting the potential involvement of mtDNA-encoded proteins in the development of ASD.

20.
Front Neurol ; 14: 1216328, 2023.
Article in English | MEDLINE | ID: mdl-37941579

ABSTRACT

Central pontine myelinolysis (CPM) is a heterogeneous nervous system disease of pontine demyelination, usually caused by rapid correction of hyponatremia. In the present study, we report a unique case of a 46-year-old man with a hyperglycemic state complicated with CPM. MRI demonstrated a high signal on T2 and symmetric restricted diffusion in the pontine. In conclusion, the clinical case described confirmed that the hyperosmolar state inherent in hyperglycemia was a likely cause of CPM.

SELECTION OF CITATIONS
SEARCH DETAIL
...