Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Prod Res ; 36(2): 674-679, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32746709

ABSTRACT

Eight compounds were obtained from the dry fruits of Piper longum L., and their potential vascular relaxant activities were explored. The present study first revealed the access of Rosin (7) and Piperchabaoside (8) in the medicinal plant Piper longum L. The vessel tension studies showed that Piperine (2), (2E,4E,14Z)-N-isobutyleicosa-2,4,14-trienamide (3), and Piperlonguminine (6) exerted significant inhibitory effects on PE-induced mesenteric artery vasoconstriction. Furthermore, Calcium Imaging studies were applied to observe the effect of Piperine on the intracellular calcium in mesenteric artery smooth muscle cells (MASMCs). Piperine (2) was observed to promote the influx of extracellular calcium in MASMCs, and via an endothelium-independent mechanism involving Ca2+ entry. Piper longum L. might have a great potential to be further studied as a vascular relaxant, even to be a drug candidate of anti-hypertension.


Subject(s)
Piper , Plants, Medicinal , Animals , Fruit , Mesenteric Arteries , Plant Extracts/pharmacology , Rats
2.
Biomed Pharmacother ; 133: 110910, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33378990

ABSTRACT

Pulmonary arterial hypertension (PAH) is a type of high morbidity and mortality disease. Currently, the intrinsic metabolic alteration and potential mechanism of PAH are still not fully uncovered. Previously, we have found that polyphenol resveratrol (Rev) reversed the remodeling of the pulmonary vasculature and decreased the number of mitochondria in pulmonary arterial smooth muscle cells (PASMCs) (Lei Yu et al. (2017)). However, potential effects of Rev on the changed metabolic molecules derived from lung tissue and serum have no fully elucidated. Thus, we conducted a systematic elaboration through the metabonomics method. Various of metabolites in different pathways including amino acid metabolism, tricarboxylic acid cycle (TCA), acetylcholine metabolism, fatty acid metabolism and biosynthesis in male Wistar rats' sera and lung tissues were explored in three groups (normal group, PAH group, PAH and Rev treatment group). We found that leucine and isoleucine degradation, valine, leucine and isoleucine biosynthesis, tryptophan metabolism and aminoacyl-tRNA biosynthesis were involved in the development of PAH. Hydroxyphenyllactic, isopalmitic acid and cytosine might be significant key metabolites. Further work in this area may inform personalized treatment approaches in clinical practice of PAH through elucidating pathophysiology mechanisms of experimental verification.


Subject(s)
Energy Metabolism/drug effects , Lung/drug effects , Metabolomics , Pulmonary Arterial Hypertension/drug therapy , Resveratrol/pharmacology , Animals , Biomarkers/blood , Chromatography, High Pressure Liquid , Disease Models, Animal , Hypoxia/complications , Lung/metabolism , Male , Pulmonary Arterial Hypertension/blood , Pulmonary Arterial Hypertension/etiology , Rats, Wistar , Spectrometry, Mass, Electrospray Ionization
3.
J Ethnopharmacol ; 256: 112790, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32234595

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hydroxysafflor yellow A (HSYA) is the principal constituent of the flowers of Carthamus tinctorius L., a traditional Chinese herbal medicine, which has been used for the treatment of cerebrovascular and cardiovascular diseases due to its property of promoting blood circulation and removing blood stasis. It is dominated in the water extract of Carthamus tinctorius L., which has been used in the clinical treatment for cardiovascular diseases. HSYA exerts a variety of pharmacological efficacy upon the vascular system. However, the underlying mechanisms remain unclear. AIM OF THE STUDY: To investigate the vascular dilatation effect of HSYA on rat mesenteric artery (MA) and its potential mechanism. MATERIALS AND METHODS: Adult male Wistar rats were applied to the study. Tension studies were conducted to determine the dilatation activity of HSYA against pre-contracted mesenteric arterial (MA) rings by U 46619 and Phenylephrine (PE). The vascular activities were measured with or without incubation with some selective inhibitors, including L-N(ω)-nitro-L-arginine methyl ester (L-NAME, a nitro oxide synthase inhibitor), HC-067047 (a selective TRPV4 antagonist), BaCl2 (a Kir channel blocker), and Indomethacin (Indo, a nonselective cyclooxygenase inhibitor), respectively. Immunocytochemistry, Calcium Imaging, NO Production detection, and Western Blot were also employed to further study the underlying mechanism. RESULTS: HSYA reversed the constriction of MAs induced by U 46619 in a manner of concentration dependency, and the dilatation capability was reversed by L-NAME. This effect was significantly dependent on the intactness of MA endothelium, accompanying an increment of NO production in mesenteric arterial endothelium cells. The increment of NO production was reversed by inhibiting the PKA. Also, the expression of p-eNOS was activated by HSYA shown in Western Blot assays. The cells imaging revealed a significant increase and drop of the influx of Ca2+ before and after treatment with HC-067047. CONCLUSIONS: These findings suggest that HSYA exerts vessel dilation effect on MAs via a TRPV4-dependent influx of Ca2+ in endothelium cells, PKA-dependent eNOS phosphorylation and NO production mechanism. The present study indicates that HSYA has the potential to be a future candidate for the treatment of hypertension.


Subject(s)
Calcium/metabolism , Chalcone/analogs & derivatives , Mesenteric Arteries/drug effects , Quinones/pharmacology , TRPV Cation Channels/metabolism , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Carthamus tinctorius/chemistry , Chalcone/pharmacology , Dilatation/methods , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Male , Mesenteric Arteries/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...