Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(13): 9445-9453, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36928688

ABSTRACT

Bio-based polyester elastomers have been widely studied by researchers in recent years because of their comprehensive sources of monomers and environmentally friendly characteristics. However, compared with traditional petroleum-based elastomers, the thermal decomposition temperature of bio-based polyester elastomers is generally low, limiting the application of bio-based elastomers. An effective strategy to increase the intrinsic thermal decomposition temperature (Td) of bio-based elastomers is to increase the length of the monomer carbon chain in the bio-based elastomers. In this work, the content of dodecanedioic acid (DDA) in a bio-based polyester elastomer composed of butanediol (BDO) and succinic acid (SUA) was increased to improve the Td of the bio-based polyester elastomer through the reaction force-field molecular dynamics (ReaxFF-MD) simulations. And the thermal decomposition mechanism of the bio-based polyester was analyzed in detail. By calculating the change rate of the molecular chain mean square displacement (MSD), it was determined that when the content of DDA was 50%, the Td of the bio-based elastomer was up to 718 K. By calculating the activation energy of thermal decomposition and further analyzing the thermal decomposition process, it is found that the thermal decomposition of the bio-based polyester elastomer is mainly through breaking the C-O bond in the backbone. This work is expected to provide theoretical guidance for designing and fabricating highly heat-resistant bio-based elastomers by systematically exploring the thermal decomposition mechanism of bio-based polyester elastomers.

2.
J Phys Chem B ; 126(39): 7761-7770, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36169228

ABSTRACT

The dispersion and diffusion mechanism of nanofillers in polymer nanocomposites (PNCs) are crucial for understanding the properties of PNCs, which is of great significance for the design of novel materials. Herein, we investigate the dispersion and diffusion behavior of two geometries of nanofillers, namely, spherical nanoparticles (SNPs) and nanorods (NRs), in bottlebrush polymers by utilizing coarse-grained molecular dynamics simulations. With the increase of the interaction strength between the nanofiller and polymer (εnp), both the SNPs and NRs experience a typical "aggregated phase-dispersed phase-bridged phase" state transition in the bottlebrush polymer matrix. We evaluate the validity of the Stokes-Einstein (SE) equation for predicting the diffusion coefficient of nanofillers in bottlebrush polymers. The results demonstrate that the SE predictions are slightly larger than the simulated values for small SNP sizes because the local viscosity that is felt by small SNPs in the densely grafted bottlebrush polymer does not differ much from the macroscopic viscosity. The relative size of the length of the NRs (L) and the radius of gyration (Rg) of the bottlebrush polymer play a key role in the diffusion of NRs. In addition, we characterize the anisotropic diffusion of NRs to analyze their translational and rotational diffusion. The motion of NRs in the direction perpendicular to the end-to-end vector is more hindered, indicating that there is a strong coupling between the rotation of NRs and the motion of the polymer. The NR motion shows stronger anisotropic diffusion at short time scales because of the steric effects generated by side chains of the bottlebrush polymer. In general, our results provide a fundamental understanding of the dispersion of nanofillers and the microscopic mechanism of nanofiller diffusion in bottlebrush polymers.


Subject(s)
Nanocomposites , Nanoparticles , Diffusion , Molecular Dynamics Simulation , Nanocomposites/chemistry , Nanoparticles/chemistry , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...