Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38625771

ABSTRACT

Scalp high-frequency oscillations (sHFOs) are a promising non-invasive biomarker of epilepsy. However, the visual marking of sHFOs is a time-consuming and subjective process, existing automatic detectors based on single-dimensional analysis have difficulty with accurately eliminating artifacts and thus do not provide sufficient reliability to meet clinical needs. Therefore, we propose a high-performance sHFOs detector based on a deep learning algorithm. An initial detection module was designed to extract candidate high-frequency oscillations. Then, one-dimensional (1D) and two-dimensional (2D) deep learning models were designed, respectively. Finally, the weighted voting method is used to combine the outputs of the two model. In experiments, the precision, recall, specificity and F1-score were 83.44%, 83.60%, 96.61% and 83.42%, respectively, on average and the kappa coefficient was 80.02%. In addition, the proposed detector showed a stable performance on multi-centre datasets. Our sHFOs detector demonstrated high robustness and generalisation ability, which indicates its potential applicability as a clinical assistance tool. The proposed sHFOs detector achieves an accurate and robust method via deep learning algorithm.


Subject(s)
Deep Learning , Epilepsy , Humans , Electroencephalography/methods , Scalp , Reproducibility of Results , Epilepsy/diagnosis
2.
Eur Radiol ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37932390

ABSTRACT

OBJECTIVE: To investigate the potential applicability of AI-assisted compressed sensing (ACS) in knee MRI to enhance and optimize the scanning process. METHODS: Volunteers and patients with sports-related injuries underwent prospective MRI scans with a range of acceleration techniques. The volunteers were subjected to varied ACS acceleration levels to ascertain the most effective level. Patients underwent scans at the determined optimal 3D-ACS acceleration level, and 3D compressed sensing (CS) and 2D parallel acquisition technology (PAT) scans were performed. The resultant 3D-ACS images underwent 3.5 mm/2.0 mm multiplanar reconstruction (MPR). Experienced radiologists evaluated and compared the quality of images obtained by 3D-ACS-MRI and 3D-CS-MRI, 3.5 mm/2.0 mm MPR and 2D-PAT-MRI, diagnosed diseases, and compared the results with the arthroscopic findings. The diagnostic agreement was evaluated using Cohen's kappa correlation coefficient, and both absolute and relative evaluation methods were utilized for objective assessment. RESULTS: The study involved 15 volunteers and 53 patients. An acceleration factor of 10.69 × was identified as optimal. The quality evaluation showed that 3D-ACS provided poorer bone structure visualization, and improved cartilage visualization and less satisfactory axial images with 3.5 mm/2.0 mm MPR than 2D-PAT. In terms of objective evaluation, the relative evaluation yielded satisfactory results across different groups, while the absolute evaluation revealed significant variances in most features. Nevertheless, high levels of diagnostic agreement (κ: 0.81-0.94) and accuracy (0.83-0.98) were observed across all diagnoses. CONCLUSION: ACS technology presents significant potential as a replacement for traditional CS in 3D-MRI knee scans, allowing thinner MPRs and markedly faster scans without sacrificing diagnostic accuracy. CLINICAL RELEVANCE STATEMENT: 3D-ACS-MRI of the knee can be completed in the 160 s with good diagnostic consistency and image quality. 3D-MRI-MPR can replace 2D-MRI and reconstruct images with thinner slices, which helps to optimize the current MRI examination process and shorten scanning time. KEY POINTS: • AI-assisted compressed sensing technology can reduce knee MRI scan time by over 50%. • 3D AI-assisted compressed sensing MRI and related multiplanar reconstruction can replace traditional accelerated MRI and yield thinner 2D multiplanar reconstructions. • Successful application of 3D AI-assisted compressed sensing MRI can help optimize the current knee MRI process.

3.
Eur Radiol ; 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37843574

ABSTRACT

OBJECTIVES: To design a deep learning-based framework for automatic segmentation and detection of intracranial aneurysms (IAs) on magnetic resonance T1 images and test the robustness and performance of framework. METHODS: A retrospective diagnostic study was conducted based on 159 IAs from 136 patients who underwent the T1 images. Among them, 127 cases were randomly selected for training and validation, and 32 cases were used to assess the accuracy and consistency of our algorithm. We developed and assembled three convolutional neural networks for the segmentation and detection of IAs. The segmentation and detection performance of the model were compared with the ground truth, and various metrics were calculated at the voxel level, IAs level, and patient level to show the performance of our framework. RESULTS: Our assembled model achieved overall Dice, voxel-level sensitivity, specificity, balanced accuracy, and F1 score of 0.802, 0.874, 0.9998, 0.937, and 0.802, respectively. A coincidence greater than 0.7 between the aneurysms predicted by the model and the ground truth was considered as a true positive. For IAs detection, the sensitivity reached 90.63% with 0.58 false positives per case. The volume of IAs segmented by our model showed a high agreement and consistency with the volume of IAs labeled by experts. CONCLUSION: The deep learning framework is achievable and robust for IAs segmentation and detection. Our model offers more clinical application opportunities compared to digital subtraction angiography (DSA)-based, CTA-based, and MRA-based methods. CLINICAL RELEVANCE STATEMENT: Our deep learning framework effectively detects and segments intracranial aneurysms using clinical routine T1 sequences, showing remarkable effectiveness and offering great potential for improving the detection of latent intracranial aneurysms and enabling early identification. KEY POINTS: •There is no segmentation method based on clinical routine T1 images. Our study shows that the proper deep learning framework can effectively localize the intracranial aneurysms. •The T1-based segmentation and detection method is more universal than other angiography-based detection methods, which can potentially reduce missed diagnoses caused by the absence of angiography images. •The deep learning framework is robust and has the potential to be applied in a clinical setting.

4.
Alzheimers Dement ; 19(8): 3327-3338, 2023 08.
Article in English | MEDLINE | ID: mdl-36786521

ABSTRACT

INTRODUCTION: It is challenging to predict which patients who meet criteria for subcortical ischemic vascular disease (SIVD) will ultimately progress to subcortical vascular cognitive impairment (SVCI). METHODS: We collected clinical information, neuropsychological assessments, T1 imaging, diffusion tensor imaging, and resting-state functional magnetic resonance imaging from 83 patients with SVCI and 53 age-matched patients with SIVD without cognitive impairment. We built an unsupervised machine learning model to isolate patients with SVCI. The model was validated using multimodal data from an external cohort comprising 45 patients with SVCI and 32 patients with SIVD without cognitive impairment. RESULTS: The accuracy, sensitivity, and specificity of the unsupervised machine learning model were 86.03%, 79.52%, and 96.23% and 80.52%, 71.11%, and 93.75% for internal and external cohort, respectively. DISCUSSION: We developed an accurate and accessible clinical tool which requires only data from routine imaging to predict patients at risk of progressing from SIVD to SVCI. HIGHLIGHTS: Our unsupervised machine learning model provides an accurate and accessible clinical tool to predict patients at risk of progressing from subcortical ischemic vascular disease (SIVD) to subcortical vascular cognitive impairment (SVCI) and requires only data from imaging routinely used during the diagnosis of suspected SVCI. The model yields good accuracy, sensitivity, and specificity and is portable to other cohorts and to clinical practice to distinguish patients with SIVD at risk for progressing to SVCI. The model combines assessment of diffusion tensor imaging and functional magnetic resonance imaging measures in patients with SVCI to analyze whether the "disconnection hypothesis" contributes to functional and structural changes and to the clinical presentation of SVCI.


Subject(s)
Cognitive Dysfunction , Dementia, Vascular , Vascular Diseases , Humans , Diffusion Tensor Imaging , Unsupervised Machine Learning , Cognitive Dysfunction/diagnostic imaging , Vascular Diseases/diagnostic imaging , Magnetic Resonance Imaging/methods
5.
Front Physiol ; 14: 1310357, 2023.
Article in English | MEDLINE | ID: mdl-38239880

ABSTRACT

Background and purpose: Anatomical labeling of the cerebral vasculature is a crucial topic in determining the morphological nature and characterizing the vital variations of vessels, yet precise labeling of the intracranial arteries is time-consuming and challenging, given anatomical structural variability and surging imaging data. We present a U-Net-based deep learning (DL) model to automatically label detailed anatomical segments in computed tomography angiography (CTA) for the first time. The trained DL algorithm was further tested on a clinically relevant set for the localization of intracranial aneurysms (IAs). Methods: 457 examinations with varying degrees of arterial stenosis were used to train, validate, and test the model, aiming to automatically label 42 segments of the intracranial arteries [e.g., 7 segments of the internal carotid artery (ICA)]. Evaluation metrics included Dice similarity coefficient (DSC), mean surface distance (MSD), and Hausdorff distance (HD). Additionally, 96 examinations containing at least one IA were enrolled to assess the model's potential in enhancing clinicians' precision in IA localization. A total of 5 clinicians with different experience levels participated as readers in the clinical experiment and identified the precise location of IA without and with algorithm assistance, where there was a washout period of 14 days between two interpretations. The diagnostic accuracy, time, and mean interrater agreement (Fleiss' Kappa) were calculated to assess the differences in clinical performance of clinicians. Results: The proposed model exhibited notable labeling performance on 42 segments that included 7 anatomical segments of ICA, with the mean DSC of 0.88, MSD of 0.82 mm and HD of 6.59 mm. Furthermore, the model demonstrated superior labeling performance in healthy subjects compared to patients with stenosis (DSC: 0.91 vs. 0.89, p < 0.05; HD: 4.75 vs. 6.19, p < 0.05). Concurrently, clinicians with model predictions achieved significant improvements when interpreting the precise location of IA. The clinicians' mean accuracy increased by 0.04 (p = 0.003), mean time to diagnosis reduced by 9.76 s (p < 0.001), and mean interrater agreement (Fleiss' Kappa) increased by 0.07 (p = 0.029). Conclusion: Our model stands proficient for labeling intracranial arteries using the largest CTA dataset. Crucially, it demonstrates clinical utility, helping prioritize the patients with high risks and ease clinical workload.

6.
ACS Appl Mater Interfaces ; 14(51): 57321-57327, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36525266

ABSTRACT

For the spin-to-charge conversion (SCC) in heavy metal/ferromagnet (HM/FM) heterostructure, the contribution of interfacial spin-orbit coupling (SOC) remains controversial. Here, we investigate the SCC process of the Pt/NiFe heterostructure by the spin pumping in YIG/Pt/NiFe/IrMn multilayers. Due to the exchange bias of NiFe/IrMn structure, the NiFe magnetization can be switched between magnetically unsaturated and saturated states by opposite resonance fields of YIG layer. The spin-pumping signal is found to decrease significantly when the NiFe magnetization is changed from the saturated state to the unsaturated state. Theoretical analysis indicates that the interfacial spin absorption is enhanced for the above-mentioned NiFe magnetic state change, which results in the increased and decreased spin flow in the Pt layer and across the Pt/NiFe interface, respectively. These results demonstrate that in our case the interfacial SOC effect at the Pt/NiFe interface is dominant over the bulk inverse spin Hall effect in the Pt layer. Our work reveals a significant role of interfacial SOC in the SCC in HM/FM heterostructure, which can promote the development of high-efficiency spintronic devices through interfacial engineering.

7.
Med Phys ; 49(3): 1522-1534, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35034367

ABSTRACT

PURPOSE: Cone-beam computed tomography (CBCT) is frequently used for accurate image-guided radiation therapy. However, the poor CBCT image quality prevents its further clinical use. Thus, it is important to improve the HU accuracy and structure preservation of CBCT images. METHODS: In this study, we proposed a novel method to generate synthetic CT (sCT) images from CBCT images. A multiresolution residual deep neural network (RDNN) was adopted for image regression from CBCT images to planning CT (pCT) images. At the coarse level, RDNN was first trained with a large amount of lower resolution images, which can make the network focus on coarse information and prevent overfitting problems. More fine information was obtained gradually by fine-tuning the coarse model using fewer number of higher resolution images. Our model was optimized by using aligned pCT and CBCT image pairs of a particular body region of 153 prostate cancer patients treated in our hospital (120 for training and 33 for testing). Five-fold cross-validation was used to tune the hyperparameters and the testing data were used to evaluate the performance of the final models. RESULTS: The mean absolute error (MAE) between CBCT and pCT on the testing data was 352.56 HU, while the MAE between the sCT and pCT images was 52.18 HU for our proposed multiresolution RDNN model, which reduced the MAE by 85.20% (p < 0.01). In addition, the average structural similarity index measure between the sCT and CBCT was 19.64% (p = 0.01) higher than that of pCT and CBCT. CONCLUSIONS: The sCT images generated using our proposed multiresolution RDNN have higher HU accuracy and structural fidelity, which may promote the further applications of CBCT images in the clinic for structure segmentation, dose calculation, and adaptive radiotherapy planning.


Subject(s)
Deep Learning , Spiral Cone-Beam Computed Tomography , Cone-Beam Computed Tomography/methods , Humans , Image Processing, Computer-Assisted/methods , Male , Neural Networks, Computer , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
8.
Biomed Opt Express ; 12(6): 3495-3511, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34221675

ABSTRACT

We propose an effective and practical decoding method of different mental states for potential applications for the design of brain-computer interfaces, prediction of cognitive behaviour, and investigation of cognitive mechanism. Functional near infrared spectroscopy (fNIRS) signals that interrogated the prefrontal and parietal cortices and were evaluated by generalized linear model were recorded when nineteen healthy adults performed the operation span (OSPAN) task. The oxygenated hemoglobin changes during OSPAN, response, and rest periods were classified with a support vector machine (SVM). The relevance vector regression algorithm was utilized for prediction of cognitive performance based on multidomain features of fNIRS signals from the OSPAN task. We acquired decent classification accuracies for OSPAN vs. response (above 91.2%) and for OSPAN vs. rest (above 94.7%). Eight of the ten cognitive testing scores could be predicted from the combination of OSPAN and response features, which indicated the brain hemodynamic responses contain meaningful information suitable for predicting cognitive performance.

9.
Epilepsia ; 62(9): 2240-2251, 2021 09.
Article in English | MEDLINE | ID: mdl-34309835

ABSTRACT

OBJECTIVE: We aimed to explore the feasibility of using scalp-recorded high-frequency oscillations (HFOs) to evaluate the efficacy and prognosis of adrenocorticotropic hormone (ACTH) treatment in patients with infantile spasms. METHODS: Thirty-nine children with infantile spasms were enrolled and divided into seizure-free and non-seizure-free groups after ACTH treatment. Patients who were seizure-free were further divided into relapse and non-relapse subgroups based on the observations made during a 6-month follow-up period. Scalp ripples were detected and compared during the interictal periods before and after 2 weeks of treatment. RESULTS: After ACTH treatment, the number and channels of ripples were significantly lower, whereas the percentage decrease in the number, spectral power, and channels of ripples was significantly higher in the seizure-free group than in the non-seizure-free group. In addition, the relapse subgroup showed higher number and spectral power and wider distribution of ripples than did the non-relapse subgroup. Changes in HFOs in terms of number, spectral power, and channel of ripples were closely related to the severity of epilepsy and can indicate disease susceptibility. SIGNIFICANCE: Scalp HFOs can be used as an effective biomarker to monitor the effect and evaluate the prognosis of ACTH therapy in patients with infantile spasms.


Subject(s)
Spasms, Infantile , Adrenocorticotropic Hormone , Electroencephalography , Humans , Infant , Prognosis , Recurrence , Scalp , Spasms, Infantile/diagnosis , Spasms, Infantile/drug therapy
10.
Med Eng Phys ; 65: 1-7, 2019 03.
Article in English | MEDLINE | ID: mdl-30665747

ABSTRACT

Ultrasonically assisted drilling as a new type of bone drilling technology has received increasing attention. However, the vibration energy of existing studies was limited. In this study, a robot-based ultrasonically assisted bone drilling experimental setup was designed, and high-energy ultrasonically assisted bone drilling (vibration frequency=24.1-41 kHz, and vibration amplitude=150-160 µm) was applied to bovine cortical bone to investigate the drilling temperature compared with conventional drilling. The effect of drilling speed on drilling temperature was also studied. The experiment results showed that, compared with the conventional bone drilling, high-energy ultrasonically assisted bone drilling had slightly higher drilling temperature (0.36-0.86 °C), which is in direct contrast to previous reports. We hypothesized that this finding was due to the thermal effect of ultrasonic vibration, which the present study confirmed. Moreover, the drilling temperature increased with higher drilling speed.


Subject(s)
Femur/surgery , Orthopedic Procedures/methods , Temperature , Ultrasonic Waves , Animals , Cattle , Orthopedic Procedures/instrumentation , Robotics , Time Factors , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...