Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(2): 1119-1126, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38174989

ABSTRACT

As the field of exfoliated van der Waals electronics grows to include complex heterostructures, the variety of available in-plane symmetries and geometries becomes increasingly valuable. In this work, we present an efficient chemical vapor transport synthesis of NbSe2I2 with the triclinic space group P1̅. This material contains Nb-Nb dimers and an in-plane crystallographic angle γ = 61.3°. We show that NbSe2I2 can be exfoliated down to few-layer and monolayer structures and use Raman spectroscopy to test the preservation of the crystal structure of exfoliated thin films. The crystal structure was verified by single-crystal and powder X-ray diffraction methods. Density functional theory calculations show triclinic NbSe2I2 to be a semiconductor with a band gap of around 1 eV, with similar band structure features for bulk and monolayer crystals. The physical properties of NbSe2I2 have been characterized by transport, thermal, optical, and magnetic measurements, demonstrating triclinic NbSe2I2 to be a diamagnetic semiconductor that does not exhibit any phase transformation below room temperature.

2.
Phys Rev Lett ; 131(7): 076901, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37656841

ABSTRACT

We report ultrafast x-ray scattering experiments of the quasi-1D charge density wave (CDW) material (TaSe_{4})_{2}I following ultrafast infrared photoexcitation. From the time-dependent diffraction signal at the CDW sidebands we identify a 0.11 THz amplitude mode derived primarily from a transverse acoustic mode of the high-symmetry structure. From our measurements we determine that this mode interacts with the valence charge indirectly through another collective mode, and that the CDW system in (TaSe_{4})_{2}I has a composite nature supporting multiple dynamically active structural degrees of freedom.

3.
Nat Mater ; 22(4): 429-433, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36894771

ABSTRACT

The lowest-lying fundamental excitation of an incommensurate charge-density-wave material is believed to be a massless phason-a collective modulation of the phase of the charge-density-wave order parameter. However, long-range Coulomb interactions should push the phason energy up to the plasma energy of the charge-density-wave condensate, resulting in a massive phason and fully gapped spectrum1. Using time-domain terahertz emission spectroscopy, we investigate this issue in (TaSe4)2I, a quasi-one-dimensional charge-density-wave insulator. On transient photoexcitation at low temperatures, we find the material strikingly emits coherent, narrowband terahertz radiation. The frequency, polarization and temperature dependences of the emitted radiation imply the existence of a phason that acquires mass by coupling to long-range Coulomb interactions. Our observations underscore the role of long-range interactions in determining the nature of collective excitations in materials with modulated charge or spin order.

4.
Inorg Chem ; 62(7): 3067-3074, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36758187

ABSTRACT

The discovery of new low-dimensional transition-metal chalcogenides is contributing to the already prosperous family of these materials. In this study, needle-shaped single crystals of a quasi-one-dimensional (1D) material, (Nb4Se15I2)I2, were grown by chemical vapor transport, and the structure was solved by single-crystal X-ray diffraction (XRD). The structure has 1D (Nb4Se15I2)n chains along the [101] direction, with two I- ions per formula unit directly bonded to Nb5+. The other two I- ions are loosely coordinated and intercalated between the chains. Individual chains are chiral and stack along the b axis in opposing directions, giving space group P21/c. The phase purity and crystal structure were verified by powder XRD. Density functional theory calculations show (Nb4Se15I2)I2 to be a semiconductor with a direct band gap of around 0.6 eV. Resistivity measurements of bulk crystals and micropatterned devices demonstrate that (Nb4Se15I2)I2 has an activation energy of around 0.1 eV, and no anomaly or transition was seen upon cooling. Low-temperature XRD shows that (Nb4Se15I2)I2 does not undergo a structural phase transformation from room temperature to 8.2 K, unlike related compounds (NbSe4)nI (n = 2, 3, or 3.33), which all exhibit charge-density waves. This compound represents a well-characterized and valence-precise member of a diverse family of anisotropic transition-metal chalcogenides.

5.
Nano Lett ; 20(6): 4228-4233, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32396010

ABSTRACT

WTe2 is a layered transitional-metal dichalcogenide (TMD) with a number of intriguing topological properties. Recently, WTe2 has been predicted to be a higher-order topological insulator (HOTI) with topologically protected hinge states along the edges. The gapless nature of WTe2 complicates the observation of one-dimensional (1D) topological states in transport due to their small contribution relative to the bulk. Here, we study the behavior of the Josephson effect in magnetic field to distinguish edge from bulk transport. The Josephson effect in few-layer WTe2 reveals 1D states residing on the edges and steps. Moreover, our data demonstrates a combination of Josephson transport properties observed solely in another HOTI-bismuth, including Josephson transport over micrometer distances, extreme robustness in a magnetic field, and nonsinusoidal current-phase relation (CPR). Our observations strongly suggest the topological origin of the 1D states and that few-layer WTe2 is a HOTI.

SELECTION OF CITATIONS
SEARCH DETAIL
...