Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Mol Genet Genomic Med ; 12(7): e2488, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963008

ABSTRACT

BACKGROUND: This study aimed to identify disease-causing variants within a Chinese family affected by Birt-Hogg-Dubé syndrome (BHDS), which arises from an autosomal dominant inheritance pattern attributed to variants in the folliculin (FLCN) gene, recognized as a tumor suppressor gene. METHODS: A Chinese proband diagnosed with BHDS due to renal tumors underwent next-generation sequencing (NGS), revealing a novel variant in the FLCN gene. Sanger sequencing was subsequently performed on blood samples obtained from family members to confirm the presence of this variant. RESULTS: A novel germline frameshift variant (NM_144997.5:c.977dup) was identified in five individuals among the screened family members, marking the first report of this variant. Additionally, a somatic frameshift variant (NM_144997.5:c.1252del) was detected in the renal tumors of the proband. No variant was detected in unaffected family members. CONCLUSIONS: A novel heterozygous variant was identified in exon 9 of the FLCN gene, which broadens the spectrum of FLCN variants. We recommend that molecular analysis of the FLCN gene be performed in patients with suspected BHDS and their families.


Subject(s)
Birt-Hogg-Dube Syndrome , Frameshift Mutation , Pedigree , Proto-Oncogene Proteins , Tumor Suppressor Proteins , Humans , Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/pathology , Tumor Suppressor Proteins/genetics , Proto-Oncogene Proteins/genetics , Male , Female , Adult , Middle Aged , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Germ-Line Mutation , Heterozygote , East Asian People
3.
Ageing Res Rev ; 97: 102288, 2024 06.
Article in English | MEDLINE | ID: mdl-38580172

ABSTRACT

Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.


Subject(s)
COVID-19 , Neuroinflammatory Diseases , Olfaction Disorders , Parkinson Disease , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/physiopathology , Parkinson Disease/physiopathology , Parkinson Disease/complications , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/physiopathology , Neuroinflammatory Diseases/immunology , Olfaction Disorders/etiology , Olfaction Disorders/physiopathology , Olfaction Disorders/virology , Olfactory Bulb/physiopathology , Olfactory Bulb/virology , Olfactory Bulb/pathology
5.
Cancer Biol Ther ; 25(1): 2345977, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38659199

ABSTRACT

Recent studies have indicated that the tumor immune microenvironment plays a pivotal role in the initiation and progression of clear cell renal cell carcinoma (ccRCC). However, the characteristics and heterogeneity of tumor immunity in ccRCC, particularly at the multiomics level, remain poorly understood. We analyzed immune multiomics datasets to perform a consensus cluster analysis and validate the clustering results across multiple internal and external ccRCC datasets; and identified two distinctive immune phenotypes of ccRCC, which we named multiomics immune-based cancer subtype 1 (MOICS1) and subtype 2 (MOICS2). The former, MOICS1, is characterized by an immune-hot phenotype with poor clinical outcomes, marked by significant proliferation of CD4+ and CD8+ T cells, fibroblasts, and high levels of immune inhibitory signatures; the latter, MOICS2, exhibits an immune-cold phenotype with favorable clinical characteristics, characterized by robust immune activity and high infiltration of endothelial cells and immune stimulatory signatures. Besides, a significant negative correlation between immune infiltration and angiogenesis were identified. We further explored the mechanisms underlying these differences, revealing that negatively regulated endopeptidase activity, activated cornification, and neutrophil degranulation may promote an immune-deficient phenotype, whereas enhanced monocyte recruitment could ameliorate this deficiency. Additionally, significant differences were observed in the genomic landscapes between the subtypes: MOICS1 exhibited mutations in TTN, BAP1, SETD2, MTOR, MUC16, CSMD3, and AKAP9, while MOICS2 was characterized by notable alterations in the TGF-ß pathway. Overall, our work demonstrates that multi-immune omics remodeling analysis enhances the understanding of the immune heterogeneity in ccRCC and supports precise patient management.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/immunology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Tumor Microenvironment/immunology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Profiling/methods , Multiomics
6.
Exp Neurol ; 375: 114724, 2024 May.
Article in English | MEDLINE | ID: mdl-38365133

ABSTRACT

Increasing evidence has shown that mitochondrial dysfunction and iron accumulation contribute to the pathogenesis of Parkinson's disease (PD). Nedd4 family interacting protein 1 (Ndfip1) is an adaptor protein of the Nedd4 E3 ubiquitin ligases. We have previously reported that Ndfip1 showed a neuroprotective effect in cell models of PD. However, whether Ndfip1 could protect dopaminergic neurons in PD animal models in vivo and the possible mechanisms are not known. Here, our results showed that the expression of Ndfip1 decreased in the substantia nigra (SN) of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mouse model. Overexpression of Ndfip1 could improve MPTP-induced motor dysfunction significantly and antagonize the loss of dopaminergic neurons in the SN of MPTP-induced mice. Further study showed that overexpression of Ndfip1 might protect against MPTP-induced neurotoxicity through regulation of voltage-dependent anion-selective channel (VDAC). In addition, we observed the downregulation of Ndfip1 and upregulation of VDAC1/2 in 1-methyl-4-phenylpyridinium ion (MPP+)-induced SH-SY5Y cells. Furthermore, high expression of Ndfip1 in SH-SY5Y cells inhibited MPP+-induced increase of VDAC1/2 and restored MPP+-induced mitochondrial dysfunction. Furthermore, Ndfip1 prevented MPP+-induced increase in the expression of long-chain acyl-CoA synthetase 4 (ACSL4), suggesting the possible role of Ndfip1 in regulating ferroptosis. Our results provide new evidence for the neuroprotective effect of Ndfip1 on dopaminergic neurons in PD animal models and provide promising targets for the treatment of iron-related diseases, including PD.


Subject(s)
Ferroptosis , MPTP Poisoning , Mitochondrial Diseases , Neuroblastoma , Neuroprotective Agents , Parkinson Disease , Animals , Humans , Mice , Disease Models, Animal , Dopaminergic Neurons/pathology , Iron/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Neuroblastoma/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Parkinson Disease/pathology
7.
Nat Commun ; 15(1): 1429, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365899

ABSTRACT

Senescence of vascular smooth muscle cells (VSMCs) contributes to aging-related cardiovascular diseases by promoting arterial remodelling and stiffness. Ferroptosis is a novel type of regulated cell death associated with lipid oxidation. Here, we show that pro-ferroptosis signaling drives VSMCs senescence to accelerate vascular NAD+ loss, remodelling and aging. Pro-ferroptotic signaling is triggered in senescent VSMCs and arteries of aged mice. Furthermore, the activation of pro-ferroptotic signaling in VSMCs not only induces NAD+ loss and senescence but also promotes the release of a pro-senescent secretome. Pharmacological or genetic inhibition of pro-ferroptosis signaling, ameliorates VSMCs senescence, reduces vascular stiffness and retards the progression of abdominal aortic aneurysm in mice. Mechanistically, we revealed that inhibition of pro-ferroptotic signaling facilitates the nuclear-cytoplasmic shuttling of proliferator-activated receptor-γ and, thereby impeding nuclear receptor coactivator 4-ferrtin complex-centric ferritinophagy. Finally, the activated pro-ferroptotic signaling correlates with arterial stiffness in a human proof-of-concept study. These findings have significant implications for future therapeutic strategies aiming to eliminate vascular ferroptosis in senescence- or aging-associated cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Muscle, Smooth, Vascular , Humans , Animals , Mice , Cellular Senescence/genetics , Cardiovascular Diseases/metabolism , NAD/metabolism , Cells, Cultured , Aging/physiology , Arteries , Myocytes, Smooth Muscle/metabolism
8.
Clin Genitourin Cancer ; 22(2): 497-513, 2024 04.
Article in English | MEDLINE | ID: mdl-38245436

ABSTRACT

RATIONALE: The emerging evidence suggested that senescence regulator genes were involved in multi cancers, which may be utilized as new targets for cancers. However, the dysregulation and clinical impact of senescence regulator genes in clear cell renal cell cancer (ccRCC) were still in foggy. METHODS: Using multiomics data from TCGA-KIRC and other datasets, we comprehensively investigated the function of senescence regulator genes in ccRCC. ccRCC patients could be remodeled into 2 significant different groups basing on senescence regulators expression: senescence-pattern cancer subtype1 (SPCS1) and subtype2 (SPCS2). We further explored clinical characteristics, functional analysis, tumor immune microenvironment, immunotherapy response, genomic mutation and drug sensitivity between the 2 subtypes. Besides, senescence-pattern related risk model was established to determine the patient's prognosis of ccRCC. Finally, the overview of MECP2 function was investigated in multi cancers. RESULTS: ccRCC patients could be divided into SPCS1 (normal aging group) and SPCS2 (Aging disorder group). The 2 subtypes showed significant different clinical characteristics and biological process in ccRCC. SPCS2, an aggressive subtype, comprised higher clinical stage and worse prognosis of ccRCC patients. SPCS2 subtype indicated activated oncogenic signaling pathway and metabolic signatures to prompt cancer expansion. SPCS2 subgroup owned immunocompromised status, which induced immune dysfunction and low ICI therapy response. The genome-copy numbers of SPCS2, including arm-gain and arm-loss was significantly more frequent than SPCS1. In addition, the 2 subtypes argue contrasting drug sensitivity profiles in clinical specimens and matched cell lines. Finally, we constructed a prognostic risk model consisted of each subtype's leading biomarkers, which exerted a satisfied performance for ccRCC patients. CONCLUSION: Senescence regulator-related signature could modify functional pathways and tumor immune microenvironment by genome mutation and pathway interaction. Senescence regulator-related molecular subtype strengthen the understanding of ccRCC' characterization and guide clinical treatment. Targeting senescence regulators may be regard as a proper way in ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Tumor Microenvironment/genetics , Immunotherapy , Aging , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Prognosis
9.
Acta Pharmacol Sin ; 45(2): 268-281, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37674042

ABSTRACT

Cell senescence has been implicated in the pathology of Parkinson's disease (PD). Both abnormal α-synuclein aggregation and iron deposition are suggested to be the triggers, facilitators, and aggravators during the development of PD. In this study, we investigated the involvement of α-synuclein and iron in the process of cell senescence in a mouse model of PD. In order to overexpress α-syn-A53T in the substantia nigra pars compacta (SNpc), human α-syn-A53T was microinjected into both sides of the SNpc in mice. We found that overexpression of α-syn-A53T for one week induced significant pro-inflammatory senescence-associated secretory phenotype (SASP), increased cell senescence-related proteins (ß-gal, p16, p21, H2A.X and γ-H2A.X), mitochondrial dysfunction accompanied by dysregulation of iron-related proteins (L-ferritin, H-ferritin, DMT1, IRP1 and IRP2) in the SNpc. In contrast, significant loss of nigral dopaminergic neurons and motor dysfunction were only observed after overexpression of α-syn-A53T for 4 weeks. In PC12 cells stably overexpressing α-syn-A53T, iron overload (ferric ammonium citrate, FAC, 100 µM) not only increased the level of reactive oxygen species (ROS), p16 and p21, but also exacerbated the processes of oxidative stress and cell senescence signalling induced by α-syn-A53T overexpression. Interestingly, reducing the iron level with deferoxamine (DFO) or knockdown of transferrin receptor 1 (TfR1) significantly improved both the phenotypes and dysregulated proteins of cell senescence induced by α-syn-A53T overexpression. All these evidence highlights the toxic interaction between iron and α-synuclein inducing cell senescence, which precedes nigral dopaminergic neuronal loss in PD. Further investigation on cell senescence may yield new therapeutic agents for the prevention or treatment of PD.


Subject(s)
Parkinson Disease , Rats , Mice , Animals , Humans , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Dopaminergic Neurons/metabolism , Iron/metabolism , Substantia Nigra/metabolism , Substantia Nigra/pathology , Dopamine/metabolism , Cellular Senescence , Disease Models, Animal
10.
Acta Pharmacol Sin ; 45(1): 52-65, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37674043

ABSTRACT

Gut microbiota disturbance and systemic inflammation have been implicated in the degeneration of dopaminergic neurons in Parkinson's disease (PD). How the alteration of gut microbiota results in neuropathological events in PD remains elusive. In this study, we explored whether and how environmental insults caused early neuropathological events in the substantia nigra (SN) of a PD mouse model. Aged (12-month-old) mice were orally administered rotenone (6.25 mg·kg-1·d-1) 5 days per week for 2 months. We demonstrated that oral administration of rotenone to ageing mice was sufficient to establish a PD mouse model and that microglial activation and iron deposition selectively appeared in the SN of the mice prior to loss of motor coordination and dopaminergic neurons, and these events could be fully blocked by microglial elimination with a PLX5622-formulated diet. 16 S rDNA sequencing analysis showed that the gut microbiota in rotenone-treated mice was altered, and mice receiving faecal microbial transplantation (FMT) from ageing mice treated with rotenone for 2 months exhibited the same pathology in the SN. We demonstrated that C-X-C motif chemokine ligand-1 (CXCL1) was an essential molecule, as intravenous injection of CXCL1 mimicked almost all the pathology in serum and SN induced by oral rotenone and FMT. Using metabolomics and transcriptomics analyses, we identified the PPAR pathway as a key pathway involved in rotenone-induced neuronal damage. Inhibition of the PPARγ pathway was consistent in the above models, whereas its activation by linoleic acid (60 mg·kg-1·d-1, i.g. for 1 week) could block these pathological events in mice intravenously injected with CXCL1. Altogether, these results reveal that the altered gut microbiota resulted in neuroinflammation and iron deposition occurring early in the SN of ageing mice with oral administration of rotenone, much earlier than motor symptoms and dopaminergic neuron loss. We found that CXCL1 plays a crucial role in this process, possibly via PPARγ signalling inhibition. This study may pave the way for understanding the "brain-gut-microbiota" molecular regulatory networks in PD pathogenesis. The aged C57BL/6 male mice with rotenone intragastric administration showed altered gut microbiota, which caused systemic inflammation, PPARγ signalling inhibition and neuroinflammation, brain iron deposition and ferroptosis, and eventually dopaminergic neurodegeneration in PD.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Mice , Animals , Male , Rotenone/toxicity , Neuroinflammatory Diseases , PPAR gamma , Mice, Inbred C57BL , Parkinson Disease/pathology , Substantia Nigra/pathology , Dopaminergic Neurons/pathology , Inflammation/pathology , Iron , Disease Models, Animal
11.
Front Oncol ; 13: 1239405, 2023.
Article in English | MEDLINE | ID: mdl-37941564

ABSTRACT

Introduction: Metastatic renal cell carcinoma (mRCC) with sarcomatoid features has a poor prognosis. Cytoreductive radical nephrectomy (CRN) can improve prognosis, but patient selection is unclear. This study aimed to develop a prediction model for selecting patients suitable for CRN. Materials and methods: Patients with a diagnosis of mRCC with sarcomatoid features in the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2015 were retrospectively reviewed. CRN benefit was defined as a survival time longer than the median overall survival (OS) in patients who did not receive CRN. A prediction nomogram was established and validated using the SEER cohort (training and internal validation) and an external validation cohort. Results: Of 900 patients with sarcomatoid mRCC, 608 (67.6%) underwent CRN. OS was longer in the CRN group than in the non-CRN group (8 vs. 6 months, hazard ratio (HR) = 0.767, p = 0.0085). In the matched CRN group, 124 (57.7%) patients survived >6 months after the surgery and were considered to benefit from CRN. Age, T-stage, systematic therapy, metastatic site, and lymph nodes were identified as independent factors influencing OS after CRN, which were included in the prediction nomogram. The monogram performed well on the training set (area under the receiver operating characteristic (AUC) curve = 0.766, 95% confidence interval (CI): 0.687-0.845), internal validation set (AUC = 0.796, 95% CI: 0.684-0.908), and external validation set (AUC = 0.911, 95% CI: 0.831-0.991). Conclusions: A nomogram was constructed and validated with good accuracy for selecting patients with sarcomatoid mRCC suitable for CRN.

12.
Cell Death Discov ; 9(1): 388, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37865662

ABSTRACT

Olfactory dysfunction represents a prodromal stage in Parkinson's disease (PD). However, the mechanisms underlying hyposmia are not specified yet. In this study, we first observed an early olfactory dysfunction in mice with intragastric rotenone administration, consistent with dopaminergic neurons loss and α-synuclein pathology in the olfactory bulb. However, a much severer olfactory dysfunction was observed without severer pathology in olfactory bulb when the loss of dopaminergic neurons in the substantia nigra occurred. Then, we established the mice models by intrastriatal α-synuclein preformed fibrils injection and demonstrated the performance in the olfactory discrimination test was correlated to the loss of dopaminergic neurons in the substantia nigra, without any changes in the olfactory bulb analyzed by RNA-sequence. In mice with intranasal ferric ammonium citrate administration, we observed olfactory dysfunction when dopaminergic neurodegeneration in substantia nigra occurred and was restored when dopaminergic neurons were rescued. Finally we demonstrated that chemogenetic inhibition of dopaminergic neurons in the substantia nigra was sufficient to cause hyposmia and motor incoordination. Taken together, this study shows a direct relationship between nigral dopaminergic neurodegeneration and olfactory dysfunction in PD models and put forward the understandings that olfactory dysfunction represents the early stage of neurodegeneration in PD progression.

13.
Free Radic Biol Med ; 208: 445-457, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37683766

ABSTRACT

Autophagy is a major clearance pathway for misfolded α-synuclein which promotes ferroptosis through NCOA4-mediated ferritin degradation. The regulation of these two processes to achieve improved neuroprotection in Parkinson's disease (PD) must be elucidated. Transcription factor EB (TFEB) is a master regulator of both autophagy and lysosome biogenesis, and lysosomes are important cellular iron storage organelles; however, the role of TFEB in ferroptosis and iron metabolism remains unclear. In this study, TFEB overexpression promoted the clearance of misfolded α-synuclein and prevented ferroptosis and iron overload. TFEB overexpression up-regulated transferrin receptor 1 (TfR1) synthesis and increased the localization of TfR1 in the lysosome, facilitating lysosomal iron import and transient lysosomal iron storage. TFEB overexpression increased the levels of cellular iron-safe storage proteins (both ferritin light and heavy chains). These functions in iron metabolism maintain the cellular labile iron at a low level and electrical activity, even under iron overload conditions. Notably, lower levels of cellular labile iron and the upregulation of ferritin light and heavy chains were reversed after TfR1 knockdown in cells overexpressing TFEB, indicating that TFEB regulates cellular labile iron and suppresses ferroptosis in a TfR1 dependent manner. Taken together, this evidence of the regulation of iron metabolism enriches our understanding of the function of TFEB. In addition, TFEB overexpression protects against ferroptosis and iron overload and provides a new direction and perspective for autophagy regulation in PD.


Subject(s)
Ferroptosis , Iron Overload , Parkinson Disease , alpha-Synuclein/metabolism , Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Ferritins/metabolism , Ferroptosis/genetics , Iron/metabolism , Iron Overload/metabolism , Lysosomes/metabolism , Parkinson Disease/metabolism , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , Animals , Mice , Rats , PC12 Cells/metabolism
14.
MedComm (2020) ; 4(4): e300, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37484972

ABSTRACT

There is significant variability with respect to the prognosis of nonmetastatic clear cell renal cell carcinoma (ccRCC) patients with venous tumor thrombus (VTT). By applying multiregion whole-exome sequencing on normal-tumor-thrombus-metastasis quadruples from 33 ccRCC patients, we showed that metastases were mainly seeded by VTT (81.8%) rather than primary tumors (PTs). A total of 706 nonmetastatic ccRCC patients with VTT from three independent cohorts were included in this study. C-index analysis revealed that pathological grading of VTT outperformed other indicators in risk assessment (OS: 0.663 versus 0.501-0.610, 0.667 versus 0.544-0.651, and 0.719 versus 0.511-0.700 for Training, China-Validation, and Poland-Validation cohorts, respectively). We constructed a risk predicting model, TT-GPS score, based on four independent variables: VTT height, VTT grading, perinephric fat invasion, and sarcomatoid differentiation in PT. The TT-GPS score displayed better discriminatory ability (OS, c-index: 0.706-0.840, AUC: 0.788-0.874; DFS, c-index: 0.691-0.717, AUC: 0.771-0.789) than previously reported models in risk assessment. In conclusion, we identified for the first-time pathological grading of VTT as an unheeded prognostic factor. By incorporating VTT grading, the TT-GPS score is a promising prognostic tool in predicting the survival of nonmetastatic ccRCC patients with VTT.

16.
Life Sci ; 320: 121508, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36858315

ABSTRACT

AIMS: Elevated iron levels in the affected areas of brain are linked to several neurodegenerative diseases including Parkinson's disease (PD). This study investigated the influence of peripheral iron overload in peripheral tissues, as well as its entry into the brain regions on lysosomal functions. The survival of dopaminergic neurons in the nigrostriatal system and motor coordination were also investigated. MAIN METHODS: An intraperitoneal injection of iron dextran (FeDx) mouse model was established. Western blot was used to detect iron deposition and lysosomal functions in the liver, spleen, hippocampal (HC), striatum (STR), substantia nigra (SN) and olfactory bulb (OB). Iron in serum and cerebrospinal fluid (CSF) was determined by an iron assay kit. Immunofluorescence and immunohistochemical staining were applied to detect dopaminergic neurons and fibers. Motor behavior was evaluated by gait analysis. KEY FINDINGS: Iron was deposited consistently in the liver and spleen, and serum iron was elevated. While iron deposition occurred late in the HC, STR and SN, without apparently affecting CSF iron levels. Although cathepsin B (CTSB), cathepsin D (CTSD), glucocerebrosidase (GCase) and lysosome integrated membrane protein 2 (LIMP-2) protein levels were dramatically up-regulated in the liver and spleen, they were almost unchanged in the brain regions. However, CTSB was up-regulated in acute iron-overloaded OB and primary cultured astrocytes. The number of dopaminergic neurons in the SN remained unchanged, and mice did not exhibit significant motor incoordination. SIGNIFICANCE: Intraperitoneal injection of FeDx in mice induces largely peripheral iron overload while not necessarily sufficient to cause severe disruption of the nigrostriatal system.


Subject(s)
Dextrans , Iron Overload , Mice , Animals , Dextrans/metabolism , Injections, Intraperitoneal , Mice, Inbred C57BL , Brain/metabolism , Iron-Dextran Complex/toxicity , Iron-Dextran Complex/metabolism , Iron/metabolism , Substantia Nigra/metabolism , Dopaminergic Neurons/metabolism , Iron Overload/chemically induced , Iron Overload/metabolism
17.
Technol Cancer Res Treat ; 22: 15330338231165141, 2023.
Article in English | MEDLINE | ID: mdl-36942462

ABSTRACT

Objective: To explore the clinical, imaging, pathologic features, treatment, and prognostic outcomes in 23 cases of collecting duct carcinoma (CDC) from a single center. Methods: The clinical and imaging findings, pathological features, treatment methods, and outcomes of the 23 patients with CDC confirmed by microscopic examination between 2003 and 2020 at our institution were retrospectively reviewed. Descriptive statistics of demographic and clinical variables were applied. Kaplan-Meier method was used to analyze survival data and log-rank test statistic survival differences between groups. Cox regression analysis was employed to identify variables independently related to overall survival (OS). Results: A total of 23 patients with CDC were identified. The mean age was 50.8 years. Stage III or IV tumors were diagnosed in 82.6% of the patients at diagnosis. The average size of the tumor was 6.58 cm, and the left kidney was more involved than the right. The median OS was 12 months. The OS rates at 1 and 2 years were 43.5% and 26.1%, respectively. Twenty patients underwent nephrectomy, 3 underwent nephroureterectomy, and 9 (39.1%) patients received subsequent therapeutic interventions following surgery. Distant metastasis and no symptoms at initial diagnosis proved to be an independent factor of unfavorable survival in Cox regression analysis. Conclusions: CDC is a rare and highly aggressive malignant renal tumor, and most patients present at an advanced stage at initial diagnosis. More than half of the patients died within 1 year after surgery. Distant metastasis and no clinical symptoms at initial diagnosis were independent risk prognostic factors for patients with CDC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Middle Aged , Carcinoma, Renal Cell/pathology , Retrospective Studies , Kidney/pathology , Kidney Neoplasms/pathology , Prognosis
18.
J Cancer Res Clin Oncol ; 149(10): 7305-7317, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36920562

ABSTRACT

BACKGROUND: Dysregulation of Long Non-coding RNAs (lncRNAs) emerges to be a hallmark of cancers. Metastatic prostate cancer and localized disease that recurs after treatment are clinical challenges, it remains unclear how lncRNA plays a role in those processes. METHODS: From previous RNA-Seq data on 65 prostate cancer and adjacent normal tissues. We identified a novel lncRNA ENST00000503625 down-regulated in prostate cancer and correlated with tumor progression characteristics. Public datasets were examined for associations between ENST00000503625 expression and clinical parameters and prognoses. Subsequently, we constructed and externally validated a nomogram for predicting biochemical recurrence (BCR). Finally, in vitro experiments were carried out to determine how ENST00000503625 functions biologically in prostate cancer. RESULTS: Low ENST00000503625 in tumor was associated with poor clinical features and prognoses. TCGA pan-cancer analysis found that ENST00000503625 was deregulated in a variety of tumors and correlated with overall survival, disease-specific survival, and progression-free survival. The nomogram for predicting BCR was constructed using TCGA data, which exhibited excellent accuracy in external validation with Chinese Prostate Cancer Genome and Epigenome Atlas data. Gene Ontology and KEGG pathway analysis found that genes related to ENST00000503625 were enriched in multiple tumor progression related pathways. When ENST00000503625 was knocked down in vitro, the epithelial-mesenchymal transition was induced, by which cancer cells migrated and invaded more readily. CONCLUSION: Our data suggested that ENST00000503625 may serve as a potential prognostic marker or a therapeutic target for prostate cancer metastases.


Subject(s)
Prostatic Neoplasms , RNA, Long Noncoding , Male , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Prognosis , Prostatic Neoplasms/pathology , Genes, Tumor Suppressor , Biomarkers
19.
Theor Appl Genet ; 136(3): 47, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36912930

ABSTRACT

KEY MESSAGE: Plastidial α-glucan phosphorylase is a key factor that cooperates with plastidial disproportionating enzyme to control short maltooligosaccharide mobilization during the initiation process of starch molecule synthesis in developing rice endosperm. Storage starch synthesis is essential for grain filling. However, little is known about how cereal endosperm controls starch synthesis initiation. One of core events for starch synthesis initiation is short maltooligosaccharide (MOS) mobilization consisting of long MOS primer production and excess MOS breakdown. By mutant analyses and biochemical investigations, we present here functional identifications of plastidial α-glucan phosphorylase (Pho1) and disproportionating enzyme (DPE1) during starch synthesis initiation in rice (Oryza sativa) endosperm. Pho1 deficiency impaired MOS mobilization, triggering short MOS accumulation and starch synthesis reduction during early seed development. The mutant seeds differed significantly in MOS level and starch content at 15 days after flowering and exhibited diverse endosperm phenotypes during mid-late seed development: ranging from pseudonormal to shrunken (Shr), severely or excessively Shr. The level of DPE1 was almost normal in the PN seeds but significantly reduced in the Shr seeds. Overexpression of DPE1 in pho1 resulted in plump seeds only. DPE1 deficiency had no obvious effects on MOS mobilization. Knockout of DPE1 in pho1 completely blocked MOS mobilization, resulting in severely and excessively Shr seeds only. These findings show that Pho1 cooperates with DPE1 to control short MOS mobilization during starch synthesis initiation in rice endosperm.


Subject(s)
Endosperm , Oryza , Endosperm/genetics , Endosperm/metabolism , Oryza/metabolism , Phosphorylases/genetics , Phosphorylases/metabolism , Starch/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
20.
Plant Cell Environ ; 46(6): 1946-1961, 2023 06.
Article in English | MEDLINE | ID: mdl-36850039

ABSTRACT

Metallochaperones are a unique class of proteins that play crucial roles in metal homoeostasis and detoxification. However, few metallochaperones have been functionally characterised in rice. Heterologous expression of Heavy metal-associated Isoprenylated Plant Protein 9 (OsHIPP9), a metallochaperone, altered yeast tolerance to cadmium (Cd) and copper (Cu). We investigated the physiological role of OsHIPP9 in rice. OsHIPP9 was primarily expressed in the root exodermis and xylem region of enlarged vascular bundles (EVB) at nodes. KO of OsHIPP9 increased the Cd concentrations of the upper nodes and panicle, but decreased Cd in expanded leaves. KO of OsHIPP9 decreased Cu uptake and accumulation in rice. Constitutive OX of OsHIPP9 increased Cd and Cu accumulation in aboveground tissues and brown rice. OsHIPP9 showed binding capacity for Cd and Cu. We propose that OsHIPP9 has dual metallochaperone roles, chelating Cd in the xylem region of EVB for Cd retention in the nodes and chelating Cu in rice roots to aid Cu uptake.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Cadmium/metabolism , Copper/metabolism , Metallochaperones/metabolism , Oryza/metabolism , Metals, Heavy/metabolism , Saccharomyces cerevisiae/metabolism , Plant Roots/metabolism , Soil Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...