Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biotechnol J ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803114

ABSTRACT

Although thousands of genes have been identified or cloned in rice (Oryza sativa) in the last two decades, the majority of them have only been separately characterized in specific varieties or single-gene modified backgrounds, thus limiting their practical application. We developed an optimized multiplex genome editing (MGE) toolbox that can efficiently assemble and stably express up to twelve sgRNA targets in a single plant expression vector. In this study, we established the MGE-based Rapid Directional Improvement (MRDI) strategy for directional improvement of complex agronomic traits in one small-scale rice transformation. This approach provides a rapid and practical procedure, encompassing sgRNA assembly, transgene-free screening and the creation of promising germplasm, by combining the precision of gene editing with phenotype-based field breeding. The MRDI strategy was used to generate the full diversity of twelve main agronomic genes in rice cultivar FXZ for the directional improvement of its growth duration and plant architecture. After applying the MRDI to FXZ, ideal plants with the desired traits of early heading date reduced plant height, and more effective panicles were generated without compromising yield, blast resistance and grain quality. Furthermore, the results of whole-genome sequencing (WGS), including the analysis of structural variations (SVs) and single nucleotide variations (SNVs) in the MGE plants, confirmed the high specificity and low frequency of unwanted mutations associated with this strategy. The MRDI breeding strategy would be a robust approach for exploring and applying crucial agronomic genes, as well as for generating novel elite germplasm in the future.

2.
Plant Physiol Biochem ; 202: 107919, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37557018

ABSTRACT

Zinc (Zn) is an essential micronutrient for plants. Adequate regulation of Zn uptake, transport and distribution, and adaptation to Zn-deficiency stress or Zn-excess toxicity are crucial for plant growth and development. However, little has been done to understand the molecular responses of plants toward different Zn supply levels. In the present study, we investigated the growth and physiological responses of tobacco seedlings grown under Zn-completely deficient, Zn-limiting, Zn-normal, and Zn-4-fold sufficient conditions, respectively, and demonstrated that Zn deficiency/limitation caused oxidative stress and impaired growth of tobacco plants. Combined transcriptome and proteome analysis revealed up-regulation of genes/proteins associated with Zn uptake and distribution, including ZIPs, NAS3s, and HMA1s, and up-regulation of genes/proteins involved in regulation of oxidative stress, including SODs, APX1s, GPX6, and GSTs in tobacco seedlings in response to Zn deficiency/limitation, suggesting that tobacco possessed mechanisms to regulate Zn homeostasis primarily through up-regulation of the ZIPs-NAS3s module, and to alleviate Zn deficiency/limitation-induced oxidative stress through activation of the antioxidant machinery. Our results provide novel insights into the adaptive mechanisms of tobacco in response to different Zn supplies, and would lay a theoretical foundation for development of varieties of tobacco or its relatives with high tolerance to Zn-deficiency.


Subject(s)
Antioxidants , Zinc , Zinc/metabolism , Transcriptome , Nicotiana/genetics , Nicotiana/metabolism , Proteome , Seedlings/genetics , Seedlings/metabolism , Homeostasis , Gene Expression Regulation, Plant
3.
Aquat Toxicol ; 248: 106202, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35623198

ABSTRACT

Phytoremediation potential of Azolla in removal of nitrogen from wastewater has been promising. However, little is known about the response of Azolla to high concentrations of nitrogen. In this study, the responses of four Azolla species to different concentrations of total nitrogen ranging from 0 to 180 mg L-1 were examined. The responses varied among different species, and the high nitrogen-tolerant species A. caroliniana and A. microphylla could remove nitrogen from aqueous solutions with higher efficiencies. We further performed transcriptome analysis to explore the molecular mechanism underlying the response to high nitrogen stress in Azolla. RNA-seq analysis revealed a synergistic regulatory network of differentially expressed genes (DEGs) involved in nitrogen transport and metabolism in A. microphylla, mainly in the roots. Under high nitrogen treatment, the DEGs encoding nitrate transporters or nitrate transporter 1/peptide transporters (NRTs/NPFs), ammonium transporters (AMTs), nitrate reductase (NIA), nitrite reductase (NIR) and glutamine synthetases/glutamate synthases (GSs/GOGATs) were down-regulated, and the DEGs encoding glutamate dehydrogenases (GDHs) were up-regulated, suggesting that A. microphylla possessed high tolerance against excess nitrogen through down-regulation of nitrate and ammonium uptake and fine regulation of nitrogen assimilation in the roots. Our results provided a theoretical foundation for better utilization of Azolla for wastewater treatment.


Subject(s)
Ammonium Compounds , Ferns , Water Pollutants, Chemical , Ferns/metabolism , Gene Expression Profiling , Glutamates , Nitrogen/metabolism , Transcriptome , Water Pollutants, Chemical/toxicity
4.
BMC Plant Biol ; 21(1): 100, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33602126

ABSTRACT

BACKGROUND: Methyl-CpG-binding domain (MBD) proteins play important roles in epigenetic gene regulation, and have diverse molecular, cellular, and biological functions in plants. MBD proteins have been functionally characterized in various plant species, including Arabidopsis, wheat, maize, and tomato. In rice, 17 sequences were bioinformatically predicted as putative MBD proteins. However, very little is known regarding the function of MBD proteins in rice. RESULTS: We explored the expression patterns of the rice OsMBD family genes and identified 13 OsMBDs with active expression in various rice tissues. We further characterized the function of a rice class I MBD protein OsMBD707, and demonstrated that OsMBD707 is constitutively expressed and localized in the nucleus. Transgenic rice overexpressing OsMBD707 displayed larger tiller angles and reduced photoperiod sensitivity-delayed flowering under short day (SD) and early flowering under long day (LD). RNA-seq analysis revealed that overexpression of OsMBD707 led to reduced photoperiod sensitivity in rice and to expression changes in flowering regulator genes in the Ehd1-Hd3a/RFT1 pathway. CONCLUSION: The results of this study suggested that OsMBD707 plays important roles in rice growth and development, and should lead to further studies on the functions of OsMBD proteins in growth, development, or other molecular, cellular, and biological processes in rice.


Subject(s)
Oryza/metabolism , Oryza/radiation effects , Plant Proteins/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Flowers/radiation effects , Gene Expression Regulation, Plant/radiation effects , Light , Multigene Family , Oryza/genetics , Oryza/growth & development , Photoperiod , Plant Proteins/genetics
5.
Front Genet ; 11: 661, 2020.
Article in English | MEDLINE | ID: mdl-32676100

ABSTRACT

Filamentous pathogens, such as phytopathogenic oomycetes and fungi, secrete a remarkable diversity of apoplastic effector proteins to facilitate infection, many of which are able to induce cell death in plants. Over the past decades, over 177 apoplastic cell death-inducing proteins (CDIPs) have been identified in filamentous oomycetes and fungi. An emerging number of studies have demonstrated the role of many apoplastic CDIPs as essential virulence factors. At the same time, apoplastic CDIPs have been documented to be recognized by plant cells as pathogen-associated molecular patterns (PAMPs). The recent findings of extracellular recognition of apoplastic CDIPs by plant leucine-rich repeat-receptor-like proteins (LRR-RLPs) have greatly advanced our understanding of how plants detect them and mount a defense response. This review summarizes the latest advances in identifying apoplastic CDIPs of plant pathogenic oomycetes and fungi, and our current understanding of the dual roles of apoplastic CDIPs in plant-filamentous pathogen interactions.

6.
Int J Mol Sci ; 21(6)2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32245192

ABSTRACT

Basal or partial resistance has been considered race-non-specific and broad-spectrum. Therefore, the identification of genes or quantitative trait loci (QTLs) conferring basal resistance and germplasm containing them is of significance in breeding crops with durable resistance. In this study, we performed a bulked segregant analysis coupled with whole-genome sequencing (BSA-seq) to identify QTLs controlling basal resistance to blast disease in an F2 population derived from two rice varieties, 02428 and LiXinGeng (LXG), which differ significantly in basal resistance to rice blast. Four candidate QTLs, qBBR-4, qBBR-7, qBBR-8, and qBBR-11, were mapped on chromosomes 4, 7, 8, and 11, respectively. Allelic and genotypic association analyses identified a novel haplotype of the durable blast resistance gene pi21 carrying double deletions of 30 bp and 33 bp in 02428 (pi21-2428) as a candidate gene of qBBR-4. We further assessed haplotypes of Pi21 in 325 rice accessions, and identified 11 haplotypes among the accessions, of which eight were novel types. While the resistant pi21 gene was found only in japonica before, three Chinese indica varieties, ShuHui881, Yong4, and ZhengDa4Hao, were detected carrying the resistant pi21-2428 allele. The pi21-2428 allele and pi21-2428-containing rice germplasm, thus, provide valuable resources for breeding rice varieties, especially indica rice varieties, with durable resistance to blast disease. Our results also lay the foundation for further identification and functional characterization of the other three QTLs to better understand the molecular mechanisms underlying rice basal resistance to blast disease.


Subject(s)
Chromosome Mapping/methods , Disease Resistance/genetics , Oryza/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Alleles , Amino Acid Sequence , Ascomycota , Genes, Plant , Genetic Linkage , Haplotypes , INDEL Mutation , Plant Proteins/metabolism , Proline-Rich Protein Domains/genetics , Protein Interaction Domains and Motifs/genetics , Quantitative Trait Loci , Sequence Alignment , Sequence Deletion , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...