Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Circ Res ; 134(10): 1330-1347, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38557119

ABSTRACT

BACKGROUND: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS: Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3 (interferon-induced transmembrane protein 3), which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS: Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.


Subject(s)
COVID-19 , Endosomes , Lysosomes , Tetraspanin 24 , Animals , Lysosomes/metabolism , Tetraspanin 24/metabolism , Tetraspanin 24/genetics , Humans , Mice , COVID-19/metabolism , COVID-19/immunology , COVID-19/pathology , Endosomes/metabolism , Mice, Knockout , Vasculitis/metabolism , Mice, Inbred C57BL , SARS-CoV-2 , Inflammation/metabolism , Inflammation/pathology , Sepsis/metabolism
3.
Cell Commun Signal ; 21(1): 308, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37904190

ABSTRACT

BACKGROUND: Integrins are closely related to mechanical conduction and play a crucial role in the osteogenesis of human mesenchymal stem cells. Here we wondered whether tensile stress could influence cell differentiation through integrin αVß3. METHODS: We inhibited the function of integrin αVß3 of human mesenchymal stem cells by treating with c(RGDyk). Using cytochalasin D and verteporfin to inhibit polymerization of microfilament and function of nuclear Yes-associated protein (YAP), respectively. For each application, mesenchymal stem cells were loaded by cyclic tensile stress of 10% at 0.5 Hz for 2 h daily. Mesenchymal stem cells were harvested on day 7 post-treatment. Western blotting and quantitative RT-PCR were used to detect the expression of alkaline phosphatase (ALP), RUNX2, ß-actin, integrin αVß3, talin-1, vinculin, FAK, and nuclear YAP. Immunofluorescence staining detected vinculin, actin filaments, and YAP nuclear localization. RESULTS: Cyclic tensile stress could increase the expression of ALP and RUNX2. Inhibition of integrin αVß3 activation led to rearrangement of actin filaments and downregulated the expression of ALP, RUNX2 and promoted YAP nuclear localization. When microfilament polymerization was inhibited, ALP, RUNX2, and nuclear YAP nuclear localization decreased. Inhibition of YAP nuclear localization could reduce the expression of ALP and RUNX2. CONCLUSIONS: Cyclic tensile stress promotes early osteogenesis of human mesenchymal stem cells via the integrin αVß3-actin filaments axis. YAP nuclear localization participates in this process of human mesenchymal stem cells. Video Abstract.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Humans , Actin Cytoskeleton/metabolism , Cell Differentiation , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Integrin alphaVbeta3/metabolism , Mesenchymal Stem Cells/metabolism , Vinculin/metabolism
5.
Front Pharmacol ; 13: 976561, 2022.
Article in English | MEDLINE | ID: mdl-36160396

ABSTRACT

Background: Fibrosis-related diseases (FRD) include cerebral fibrosis, pulmonary fibrosis, cardiac fibrosis, liver fibrosis, renal fibrosis, peritoneal fibrosis, etc. The effects of fibrosis can be severe, resulting in organ dysfunction, functional decline, and even organ failure, which can cause serious health problems. Aim: Currently, there is no effective modern medicine for anti-fibrosis in the clinics; however, Chinese medicine has a certain beneficial effect on treating such diseases. Astragalus Mongholicus (AM) has rich medicinal value, and its anti-fibrosis effect has been recently investigated. In recent years, more and more experimental studies have been conducted on the intervention of astragaloside IV (AS-IV), astragalus polysaccharide (APS), astragalus flavone, cycloastragalus alcohol, astragalus water extract and other pharmacological components in fibrosis-related diseases, attracting the interest of researchers. We aim to provide ideas for future research by summarizing recent research advances of AM in treating fibrosis-related diseases. Methods: A literature search was conducted from the core collections of electronic databases such as Baidu Literature, Sciencen.com, Google Scholar, PubMed, and Science Direct using the above keywords and the pharmacological and phytochemical details of the plant. Results: AM can be used to intervene in fibrosis-disease progression by regulating inflammation, oxidative stress, the immune system, and metabolism. Conclusion: AS-IV, APS, and astragalus flavone were studied and discussed in detail. These components have high potential anti-fibrosis activity. Overall, this review aims to gain insight into the AM's role in treating fibro-related diseases.

6.
Clin Lab ; 68(7)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35975526

ABSTRACT

BACKGROUND: The goal was to simply and efficiently predict the indicators of disease severity in knee osteoarthritis (KOA) patients. METHODS: One hundred eighty-four patients with KOA and 126 healthy subjects were included. WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) was used as a reference index for disease severity in KOA patients, in which WOMAC < 80 was classified as mild and WOMAC ≥ 80 as moderate and severe. Blood routine parameters of the KOA and the healthy groups were analyzed by the Mann Whitney U test. Receiver operating characteristic curves were used to analyze the sensitivity and specificity of mean corpuscular hemoglobin and platelet distribution width ratio (MPR) and monocyte and hemoglobin ratio (MHR) indicators. The correlation between MPR and MHR and disease severity of KOA was determined by bivariate regression analysis. Independent predictors of disease severity in patients with KOA were assessed by multivariate regression analysis. RESULTS: MPR, MHR, and WOMAC were significantly higher in the KOA group. The ROC curve indicated that the cutoff values of MPR and MHR were 2.09 and 0.0030, respectively, with sensitivity of 86.4% and 68.5% and specificity of 99.2% and 79.4%. Bivariate regression analysis found that MPR was better correlated with disease severity than MHR. The results of multivariate regression analysis demonstrated that the MPR values of moderate and severe patients were more than 19 times that of mild patients, and the OR values were 21.695 and 19.558, respectively. CONCLUSIONS: MPR and MHR demonstrated a good correlation with disease severity in patients with KOA. MPR is a potential independent predictor of disease severity in patients with KOA.


Subject(s)
Osteoarthritis, Knee , Erythrocyte Indices , Hematologic Tests , Humans , Osteoarthritis, Knee/diagnosis , Severity of Illness Index , Statistics, Nonparametric
7.
Sci Rep ; 12(1): 13424, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927571

ABSTRACT

The angle and position of the scapular glenoid are important in shoulder mechanics, the interpretation of diseases, and planning shoulder replacement surgery. In total shoulder replacement, understanding the bony parameters of the glenoid is also of considerable guiding significance for designing implant size and improving material adaptability. To compare glenoid parameters measured from skeletal scapula specimens with those measured by 3D modeling of CT scanning images, analyze correlations between these data, and draw conclusions to guide clinical treatment of shoulder joint injury and total shoulder joint replacement. The data of manual and CT measurements from the same Chinese dry glenoid was compared. Three-dimensional measurement data were collected from the Japanese population and compared with the Chinese population data generated in this study. There were no significant differences between manual measurement and CT measurement in the inclination angle, glenopolar angle, anteroposterior transverse diameter, upper to lower vertical diameter, and depth of the glenoid (P = 0.288, 0.524, 0.111, 0.194, and 0.055, respectively). Further, there were no significant differences between Japanese and Chinese glenoid bones in the upper and lower vertical diameters or anteroposterior transverse diameters (P > 0.05). There were no significant differences between CT and manual measurements, suggesting that the CT method may provide measurements very close to the actual specimen size. This result, however, indicated that the measurer should be careful when measuring the depth of the glenoid.


Subject(s)
Arthroplasty, Replacement, Shoulder , Glenoid Cavity , Shoulder Injuries , Shoulder Joint , Arthroplasty, Replacement, Shoulder/methods , Glenoid Cavity/diagnostic imaging , Glenoid Cavity/surgery , Humans , Imaging, Three-Dimensional , Scapula/diagnostic imaging , Shoulder Joint/diagnostic imaging , Shoulder Joint/surgery
8.
Stem Cell Res Ther ; 13(1): 187, 2022 05 07.
Article in English | MEDLINE | ID: mdl-35525990

ABSTRACT

BACKGROUND: Adipose-derived stem cells (ASCs) are obtained from a variety of sources in vivo where they present in large quantities. These cells are suitable for use in autologous transplantation and the construction of tissue-engineered adipose tissue. Studies have shown that ASCs differentiation is in a high degree of heterogeneity, yet the molecular basis including key regulators of differentiation remains to clarify. METHODS: We performed single-cell RNA sequencing and bioinformatics analysis on both undifferentiated (ASC-GM group) and adipogenically differentiated human ASCs (ASC-AD group, ASCs were cultured in adipogenic inducing medium for 1 week). And then, we verified the results of serum amyloid A1 (SAA1) with western blotting, immunofluorescence staining, oil red O staining. After these experiments, we down-regulated the expression of serum amyloid A1 (SAA1) gene to verify the adipogenic differentiation ability of ASCs. RESULTS: In single-cell RNA sequence analyzing, we obtained 4415 cells in the ASC-GM group and 4634 cells in the ASC-AD group. The integrated sample cells could be divided into 11 subgroups (0-10 cluster). The cells in cluster 0, 2, 5 were came from ASC-GM group and the cells in cluster 1, 3, 7 came from ASC-AD group. The cells of cluster 4 and 6 came from both ASC-GM and ASC-AD groups. Fatty acid binding protein 4, fatty acid binding protein 5, complement factor D, fatty acid desaturase 1, and insulin like growth factor binding protein 5 were high expressed in category 1 and 7. Regulation of inflammatory response is the rank 1 biological processes. And cellular responses to external stimuli, negative regulation of defense response and acute inflammatory response are included in top 20 biological processes. Based on the MCODE results, we found that SAA1, C-C Motif Chemokine Ligand 5 (CCL5), and Annexin A1 (ANXA1) significantly highly expressed during adipogenic differentiation. Western blot and immunofluorescent staining results showed that SAA1 increased during adipogenesis. And the area of ORO positive staining in siSAA1 cells was significantly lower than in the siControl (negative control) cells. CONCLUSIONS: Our results also indicated that our adipogenic induction was successful, and there was great heterogeneity in the adipogenic differentiation of ASCs. SAA1 with the regulation of inflammatory response were involved in adipogenesis of ASCs based on single-cell RNA sequencing analysis. The data obtained will help to elucidate the intrinsic mechanism of heterogeneity in the differentiation process of stem cells, thus, guiding the regulation of self-renewal and differentiation of adult stem cells.


Subject(s)
Adipogenesis , Adipose Tissue , Adipogenesis/genetics , Cell Differentiation , Cells, Cultured , Fatty Acid-Binding Proteins/genetics , Humans , Sequence Analysis, RNA , Stem Cells
9.
Article in English | MEDLINE | ID: mdl-35341150

ABSTRACT

Introduction: The objective of our study is to explore the potential active ingredients and activity of Ginseng and Astragalus decoction (GAD) in the treatment of malignant pleural effusion (MPE) by using network pharmacology and molecular docking technologies. Methods: The active ingredients and corresponding targets of Ginseng and Astragalus were extracted from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. The relevant targets of malignant pleural effusion (MPE) were searched in the disease databases. Overlapping targets of Ginseng and Astragalus and the corresponding targets of MPE were obtained to define the effective target of GAD for the treatment of MPE. The STRING database was applied to construct a predicted protein-protein interaction network for intersected targets. The Cytoscape software was used to screen key targets with a therapeutic potential. Using the Metascape database, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis on the targets identified in the study. PyMOL and AutoDock Vina were used to molecularly dock the selected key components to their respective key targets for MPE treatment. Results: The core target network revealed 22 main active ingredients, 26 main targets, and 16 signaling pathways in GAD. Molecular docking revealed 6 targets (AKT serine/threonine kinase 1, intercellular adhesion molecule, Jun proto-oncogene, peroxisome proliferator activated receptor gamma, prostaglandin-endoperoxide synthase 2, and tumor necrosis factor) that could partially dock with kaempferol, frutinone A, ginsenoside RH2, formononetin, and quercetin. Conclusions: Several components, targets, and signaling pathways of GAD contribute to the treatment of MPE, which suggests a rationale for further investigation on GAD's active molecule and mechanism of action in the clinical application of MPE.

10.
Cells ; 10(12)2021 12 14.
Article in English | MEDLINE | ID: mdl-34944031

ABSTRACT

Lamins are intermediate filaments that play a crucial role in sensing mechanical strain in the nucleus of cells. ß-catenin and megakaryoblastic leukemia-1 (MKL1) are critical signaling molecules that need to be translocated to the nucleus for their transcription in response to mechanical strain that induces osteogenesis. However, the exact molecular mechanism behind the translocation of these molecules has not been fully investigated. This study used 10% cyclic strain to induce osteogenesis in the murine osteoblast precursor cell line (MC3T3). The translocation of ß-catenin and MKL1 was studied by performing knockdown and overexpression of lamin A/C (LMNA). Cyclic strain increased the expression of osteogenic markers such as alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and enhanced ALP staining after seven days of incubation. Resultantly, MKL1 and ß-catenin were translocated in the nucleus from the cytoplasm during the stress-induced osteogenic process. Knockdown of LMNA decreased the accumulation of MKL1 and ß-catenin in the nucleus, whereas overexpression of LMNA increased the translocation of these molecules. In conclusion, our study indicates that both MKL1 and ß-catenin molecules are dependent on the expression of LMNA during strain-induced osteogenesis.


Subject(s)
Lamin Type A/metabolism , Osteogenesis , Stress, Mechanical , beta Catenin/metabolism , Animals , Cell Line , Core Binding Factor Alpha 1 Subunit/metabolism , Fluorescence , Humans , Mice , Trans-Activators
11.
Orthop J Sports Med ; 9(11): 23259671211047269, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34820459

ABSTRACT

BACKGROUND: The anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) contribute greatly to the overall stability of the ankle joint; however, ATFL and combined ATFL-CFL sprains are common. Anatomic reconstruction of the lateral collateral ligament with grafts has been proposed for patients with poor tissue quality or inadequate local tissue. Anatomic reconstruction of the lateral ankle ligaments requires a good understanding of their anatomic location. PURPOSE: To describe the anatomy of the ATFL and CFL ligaments quantitatively and qualitatively and explore the relationship of some morphological parameters. STUDY DESIGN: Descriptive laboratory study. METHODS: A total of 66 adult ankle specimens were analyzed for ATFL band type, origin, length, width, thickness, and angle between the ATFL and CFL, and 73 adult ankle specimens were used for measuring the origin of the CFL. The coefficient of variation was used to describe and compare the respective variability of angle, length, width, and thickness. The origin of the ATFL was labeled as point A, and the leading edge of the CFL intersection with the articular surface of the calcaneus was considered point B. RESULTS: The ATFL had a variable number of bands. A high degree of variability (coefficient of variation >0.2) was seen for most morphological measurements of the ATFL. In addition, the length of distance AB also varied. The CFL originated at the tip of the fibula in only 9% of specimens. It was found more commonly at the anterior border of the lateral malleolus (4.94 ± 1.70 mm from the tip). The angle between the ATFL and CFL was consistent at 100° to 105º. CONCLUSION: A fair amount of variability of ATFL length, width, and thickness were found in our study, with less variability in the ATFL-CFL angle. Most CFLs attached anterior to the tip of the fibula. CLINICAL RELEVANCE: Providing relevant anatomic data of ATFL and CFL is important in ensuring proper surgical treatment of ankle joint injuries.

12.
Stem Cell Res Ther ; 12(1): 523, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620239

ABSTRACT

BACKGROUND: Integrins play a prominent role in osteogenic differentiation by transmitting both mechanical and chemical signals. Integrin expression is closely associated with tensile stress, which has a positive effect on osteogenic differentiation. We investigated the relationship between integrin αVß3 and tensile stress. METHODS: Human fibroblasts were treated with c (RGDyk) and lentivirus transduction to inhibit function of integrin αVß3. Y-15, cytochalasin D and verteporfin were used to inhibit phosphorylation of FAK, polymerization of microfilament and function of nuclear YAP, respectively. Fibroblasts were exposed to a cyclic tensile stress of 10% at 0.5 Hz, once a day for 2 h each application. Fibroblasts were harvested on day 4 and 7 post-treatment. The expression of ALP, RUNX2, integrin αVß3, ß-actin, talin-1, FAK, vinculin, and nuclear YAP was detected by Western blot or qRT-PCR. The expression and distribution of integrin αVß3, vinculin, microfilament and nuclear YAP. RESULTS: Cyclic tensile stress was found to promote expression of ALP and RUNX2. Inhibition of integrin αVß3 activation downregulated the rearrangement of microfilament and the expression of ALP, RUNX2 and nuclear YAP. When the polymerization of microfilament was inhibited the expression of ALP, RUNX2 and nuclear YAP were decreased. The phosphorylation of FAK induced by cyclic tensile stress reduced by the inhibition of integrin αVß3. The expression of ALP and RUNX2 was decreased by inhibition of phosphorylation of FAK and inhibition of nuclear YAP. CONCLUSIONS: Cyclic tensile stress promotes osteogenesis of human fibroblasts via integrin αVß3-microfilament axis. Phosphorylation of FAK and nuclear YAP participates in this process.


Subject(s)
Fibroblasts/cytology , Integrin alphaVbeta3 , Osteogenesis , Actin Cytoskeleton , Cells, Cultured , Humans , Stress, Mechanical
13.
Stem Cells ; 39(11): 1478-1488, 2021 11.
Article in English | MEDLINE | ID: mdl-34346140

ABSTRACT

Mesenchymal stem cells (MSCs) are known for their multilineage differentiation potential with immune-modulatory properties. The molecular underpinnings of differentiation remain largely undefined. In this study, we investigated the cellular and molecular features of chemically induced osteogenesis from MSC isolated from human adipose tissue (human adipose MSCs, hAMSCs) using single-cell RNA-sequencing (scRNA-seq). We found that a near complete differentiation of osteogenic clusters from hAMSCs under a directional induction. Both groups of cells are heterogeneous, and some of the hAMSCs cells are intrinsically prepared for osteogenesis, while variant OS clusters seems in cooperation with a due division of the general function. We identified a set of genes related to cell stress response highly expressed during the differentiation. We also characterized a series of transitional transcriptional waves throughout the process from hAMSCs to osteoblast and specified the unique gene networks and epigenetic status as key markers of osteogenesis.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Adipose Tissue , Cell Differentiation/genetics , Cells, Cultured , Humans , Osteogenesis/genetics , Transcriptome/genetics
14.
Biomolecules ; 11(5)2021 05 19.
Article in English | MEDLINE | ID: mdl-34069539

ABSTRACT

Human skin fibroblasts (HSFs) approximate the multidirectional differentiation potential of mesenchymal stem cells, so they are often used in differentiation, cell cultures, and injury repair. They are an important seed source in the field of bone tissue engineering. However, there are a few studies describing the mechanism of osteogenic differentiation of HSFs. Here, osteogenic induction medium was used to induce fibroblasts to differentiate into osteoblasts, and the role of the mechanical sensitive element PDLIM5 in microfilament-mediated osteogenic differentiation of human fibroblasts was evaluated. The depolymerization of microfilaments inhibited the expression of osteogenesis-related proteins and alkaline phosphatase activity of HSFs, while the polymerization of microfilaments enhanced the osteogenic differentiation of HSFs. The evaluation of potential protein molecules affecting changes in microfilaments showed that during the osteogenic differentiation of HSFs, the expression of PDLIM5 increased with increasing induction time, and decreased under the state of microfilament depolymerization. Lentivirus-mediated PDLIM5 knockdown by shRNA weakened the osteogenic differentiation ability of HSFs and inhibited the expression and morphological changes of microfilament protein. The inhibitory effect of knocking down PDLIM5 on HSF osteogenic differentiation was reversed by a microfilament stabilizer. Taken together, these data suggest that PDLIM5 can mediate the osteogenic differentiation of fibroblasts by affecting the formation and polymerization of microfilaments.


Subject(s)
Actin Cytoskeleton/metabolism , Adaptor Proteins, Signal Transducing/genetics , LIM Domain Proteins/genetics , Osteogenesis , Skin/cytology , Alkaline Phosphatase/metabolism , Cell Differentiation , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Knockdown Techniques , Humans , Skin/metabolism
15.
Cell Mol Biol Lett ; 26(1): 15, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33858321

ABSTRACT

BACKGROUND: Actin is an essential cellular protein that assembles into microfilaments and regulates numerous processes such as cell migration, maintenance of cell shape, and material transport. METHODS: In this study, we explored the effect of actin polymerization state on the osteogenic differentiation of human adipose-derived stem cells (hASCs). The hASCs were treated for 7 days with different concentrations (0, 1, 5, 10, 20, and 50 nM) of jasplakinolide (JAS), a reagent that directly polymerizes F-actin. The effects of the actin polymerization state on cell proliferation, apoptosis, migration, and the maturity of focal adhesion-related proteins were assessed. In addition, western blotting and alizarin red staining assays were performed to assess osteogenic differentiation. RESULTS: Cell proliferation and migration in the JAS (0, 1, 5, 10, and 20 nM) groups were higher than in the control group and the JAS (50 nM) group. The FAK, vinculin, paxillin, and talin protein expression levels were highest in the JAS (20 nM) group, while zyxin expression was highest in the JAS (50 nM) group. Western blotting showed that osteogenic differentiation in the JAS (0, 1, 5, 10, 20, and 50 nM) group was enhanced compared with that in the control group, and was strongest in the JAS (50 nM) group. CONCLUSIONS: In summary, our data suggest that the actin polymerization state may promote the osteogenic differentiation of hASCs by regulating the protein expression of focal adhesion-associated proteins in a concentration-dependent manner. Our findings provide valuable information for exploring the mechanism of osteogenic differentiation in hASCs.


Subject(s)
Actins/metabolism , Cell Differentiation , Osteogenesis , Stem Cells/metabolism , Adipose Tissue/cytology , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Depsipeptides/pharmacology , Focal Adhesions/drug effects , Humans , Osteogenesis/drug effects , Polymerization , Stem Cells/cytology , Up-Regulation/drug effects , Zyxin/genetics , Zyxin/metabolism
16.
FASEB J ; 35(2): e21175, 2021 02.
Article in English | MEDLINE | ID: mdl-33205555

ABSTRACT

Human adipose-derived stem cells (hASCs) are ideal seed cells for tissue engineering due to their multidirectional differentiation potential. Microfilaments, microtubules, and intermediate filaments are responsible for supporting the intracellular space. Vimentin, a type III intermediate filament protein that is specifically expressed in cells of mesenchymal origin, can function as a scaffold and endow cells with tension and shear stress resistance. Actin stress fibers (ASF) act as an important physical device in stress signal transduction, providing stiffness for cells, and promoting osteogenesis. Through direct physical contact, cross-linkers, and spatial interactions, vimentin and actin networks exist as intersecting entities. Spatial interactions occur in the overlapping area of cytoskeleton subsystems, which could affect cell morphology, cell mechanics, and cell fate. However, how does the spatial organization between the cytoskeletal subsystems changed during osteogenesis, especially between vimentin and ASF, is still not understood, and its mechanism effect on cell fate remains unclear. In our study, WB experiment was used to detect the expression changes in Vimentin, ASF, and other proteins. Cells were reconstructed by three-dimensional scanning with fluorescence microscope, and the spatial thickness of vimentin and ASF cytoskeletons and the thickness of the overlapping area between them were calculated, respectively, so as to observe the spatial reorganization of vimentin and ASF in cells. Cytochalasin D (an inhibitor of actin polymerization) and vimentin upregulated/downregulated cells were used to verify the change in the spatial organization between vimentin and ASF and its influence on osteogenesis. Then, heat shock protein 27 (HSP27) was downregulated to illuminate the regulatory mechanisms of spatial organization between vimentin and ASF during osteogenesis. The amounts and the spatial positions of vimentin and actin stress fiber exhibited opposite trends during osteogenesis. Through controlling the anchor sites on the nucleus, intermediate filaments vimentin can reduce the spatial proportion of actin stress fibers, which can be regulated by HSP27. In addition, depolymerization of actin stress fibers lead to lower osteogenic differentiation ability, resulting in osteogenesis and lipogenesis existed simultaneously, that can be resisted by vimentin. Our data indicate that the spatial reorganization of vimentin and actin stress fibers is a key factor in the regulation of the differentiation state of hASCs. And their spatial overlapping area is detrimental to hASCs osteogenesis, providing a new perspective for further exploring the mechanism underlying hASCs osteogenesis.


Subject(s)
Actins/metabolism , Adipose Tissue/cytology , Cell Differentiation/genetics , Osteogenesis/genetics , Signal Transduction/genetics , Stem Cells/metabolism , Stress Fibers/metabolism , Vimentin/metabolism , Actins/antagonists & inhibitors , Cell Differentiation/drug effects , Cell Nucleus/metabolism , Cells, Cultured , Cytochalasin D/pharmacology , Cytoplasm/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Intermediate Filaments/metabolism , Microscopy, Fluorescence , Microtubules/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Osteogenesis/drug effects , Signal Transduction/drug effects , Transfection , Vimentin/genetics
17.
Stem Cell Res Ther ; 11(1): 522, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33272329

ABSTRACT

BACKGROUND: The physical factors of the extracellular matrix have a profound influence on the differentiation behavior of mesenchymal stem cells. In this study, the effect of the biophysical microenvironment on rat bone marrow mesenchymal stem cell (BMSC) osteogenesis was studied both in vitro and in vivo. METHODS: To prepare cell culture scaffolds of varying stiffness, increasing amounts of hydroxyapatite (HAp) were mixed into a polyethylene glycol/silk fibroin (PEG/SF) solution. The amount of HAp ranged from 25 to 100 mg, which provided for different ratios between HAp and the PEG/SF composite. In vitro, the effect of stiffness on the osteogenic differentiation of rat BMSCs was studied. The outcome measures, which were verified in vivo, included the protein expression of runt-related transcription factor 2 and osteocalcin, alkaline phosphatase activity, and the mRNA expression of osteogenesis-related markers. RESULTS: Increasing amounts of HAp resulted in an increased elastic modulus of the cell culture scaffolds. The PEG/SF/HAp fabricated with HAp (50 mg) significantly increased cell adhesion and viability (p < 0.05) as well as the expression of all the osteogenesis-related markers (p < 0.05). CONCLUSIONS: We developed a novel cell culture scaffold and demonstrated that substrate stiffness influenced the osteogenic differentiation of rat BMSCs.


Subject(s)
Fibroins , Animals , Cell Differentiation , Durapatite , Osteogenesis , Polyethylene Glycols , Porosity , Rats , Tissue Engineering , Tissue Scaffolds
18.
Front Physiol ; 11: 975, 2020.
Article in English | MEDLINE | ID: mdl-32848888

ABSTRACT

Regenerative medicine represented by stem cell technology has become one of the pillar medical technologies for human disease treatment. Cytoskeleton plays important roles in maintaining cell morphology, bearing external forces, and maintaining the effectiveness of cell internal structure, among which cytoskeleton related proteins are involved in and play an indispensable role in the changes of cytoskeleton. PDLIM5 is a cytoskeleton-related protein that, like other cytoskeletal proteins, acts as a binding protein. PDZ and LIM domain 5 (PDLIM5), also known as ENH (Enigma homolog), is a cytoplasmic protein with a molecular mass of about 63 KDa that consists of a PDZ domain at the N-terminus and three LIM domains at the C-terminus. PDLIM5 binds to the cytoskeleton and membrane proteins through its PDZ domain and interacts with various signaling molecules, including protein kinases and transcription factors, through its LIM domain. As a cytoskeleton-related protein, PDLIM5 plays an important role in regulating cell proliferation, differentiation and cell fate decision in multiple tissues and cell types. In this review, we briefly summarize the state of knowledge on the PDLIM5 gene, structural properties, and molecular functional mechanisms of the PDLIM5 protein, and its role in cells, tissues, and organ systems, and describe the possible underlying molecular signaling pathways. In the last part of this review, we will focus on discussing the limitations of existing research and the future prospects of PDLIM5 research in turn.

19.
Stem Cell Res Ther ; 11(1): 283, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678016

ABSTRACT

Mesenchymal stem cells (MSCs) have the capacity to differentiate into multiple lineages including osteogenic and adipogenic lineages. An increasing number of studies have indicated that lineage commitment by MSCs is influenced by actin remodeling. Moreover, actin has roles in determining cell shape, nuclear shape, cell spreading, and cell stiffness, which eventually affect cell differentiation. Osteogenic differentiation is promoted in MSCs that exhibit a large spreading area, increased matrix stiffness, higher levels of actin polymerization, and higher density of stress fibers, whereas adipogenic differentiation is prevalent in MSCs with disrupted actin networks. In addition, the mechanical properties of F-actin empower cells to sense and transduce mechanical stimuli, which are also reported to influence differentiation. Various biomaterials, mechanical, and chemical interventions along with pathogen-induced actin alteration in the form of polymerization and depolymerization in MSC differentiation were studied recently. This review will cover the role of actin and its modifications through the use of different methods in inducing osteogenic and adipogenic differentiation.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Actins/genetics , Adipogenesis , Cell Differentiation
20.
J Cell Mol Med ; 24(14): 7968-7978, 2020 07.
Article in English | MEDLINE | ID: mdl-32463168

ABSTRACT

The mechanisms underlying the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) remain unclear. In the present study, we aimed to identify the key biological processes during osteogenic differentiation. To this end, we downloaded three microarray data sets from the Gene Expression Omnibus (GEO) database: GSE12266, GSE18043 and GSE37558. Differentially expressed genes (DEGs) were screened using the limma package, and enrichment analysis was performed. Protein-protein interaction network (PPI) analysis and visualization analysis were performed with STRING and Cytoscape. A total of 240 DEGs were identified, including 147 up-regulated genes and 93 down-regulated genes. Functional enrichment and pathways of the present DEGs include extracellular matrix organization, ossification, cell division, spindle and microtubule. Functional enrichment analysis of 10 hub genes showed that these genes are mainly enriched in microtubule-related biological changes, that is sister chromatid segregation, microtubule cytoskeleton organization involved in mitosis, and spindle microtubule. Moreover, immunofluorescence and Western blotting revealed dramatic quantitative and morphological changes in the microtubules during the osteogenic differentiation of human adipose-derived stem cells. In summary, the present results provide novel insights into the microtubule- and cytoskeleton-related biological process changes, identifying candidates for the further study of osteogenic differentiation of the mesenchymal stem cells.


Subject(s)
Cell Differentiation/genetics , Computational Biology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Ontology , Humans , Molecular Sequence Annotation , Protein Interaction Mapping , Protein Interaction Maps , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...