Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(49): 54833-54841, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33237719

ABSTRACT

The development of efficient and low-cost flexible metal electrodes is significant for flexible rechargeable zinc-air batteries (ZABs). Herein, we reported a new type of flexible metal (zinc and nickel) electrode fabricated via a two-step deposition method on polyurethane sponges (PUS) for flexible ZABs. Compared to conventional electrodes, the metal-coated PUS electrodes exhibited great flexibility, softness, and natural mechanical resilience. In addition, a flexible sandwich-structured ZAB was assembled with the metal-coated PUS electrodes and in situ cross-linked polyacrylic acid (PAA)-KOH hydrogel electrolyte. The flexible ZAB presented stable discharge/charge performance even under complex rolling and twisting deformations. Moreover, inspired by the kirigami-strategy for device-level stretchability, a 100% stretchable fence-shaped ZAB and a 160% stretchable serpentine-shaped ZAB were cut from the above-mentioned flexible ZABs. The kirigami-inspired configuration enabled the battery performance to be stable during stretching, benefiting from the softness of the PUS@metal electrode. These flexible and stretchable ZABs would broaden the promising applications for portable and wearable energy storage devices.

2.
ACS Appl Mater Interfaces ; 10(36): 30433-30440, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30052415

ABSTRACT

As one of the advanced cobalt-based materials, cobalt sulfides with novel architecture have attracted huge interest due to the low cost, easy availability, and promising bifunctional activity for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), which is essential for next-generation energy storage devices. Herein, we demonstrated a facile and clean electrochemical technique to directly synthesize CoS nanosheets with high purity onto the surface of carbon cloth, and a quick thermal treatment was performed to further improve the catalytic performance (CoS-A). This novel electrochemical technique avoids the use of the binder, surfactant, and other organic additives, which may cause poor electric conductivity as well as undesirable surface wettability, exhibiting great potential of the large-scale applications. The obtained CoS-A exhibits a superior electrocatalytic performance for the OER and ORR, with a high ORR current density (-1.51 mA cm-2 at 0.2 V), considerable OER current density (148 mA cm-2 at 1.9 V), and excellent durability in continuous measurement for over 12 h. The approach offers a powerful yet simple method to control the phase, composition, and morphology of a highly active CoS catalyst, which provides a new idea for the design of high-performance catalysts.

3.
Adv Mater ; 30(4)2018 Jan.
Article in English | MEDLINE | ID: mdl-29210114

ABSTRACT

Under development for next-generation wearable electronics are flexible, knittable, and wearable energy-storage devices with high energy density that can be integrated into textiles. Herein, knittable fiber-shaped zinc-air batteries with high volumetric energy density (36.1 mWh cm-3 ) are fabricated via a facile and continuous method with low-cost materials. Furthermore, a high-yield method is developed to prepare the key component of the fiber-shaped zinc-air battery, i.e., a bifunctional catalyst composed of atomically thin layer-by-layer mesoporous Co3 O4 /nitrogen-doped reduced graphene oxide (N-rGO) nanosheets. Benefiting from the high surface area, mesoporous structure, and strong synergetic effect between the Co3 O4 and N-rGO nanosheets, the bifunctional catalyst exhibits high activity and superior durability for oxygen reduction and evolution reactions. Compared to a fiber-shaped zinc-air battery using state-of-the-art Pt/C + RuO2 catalysts, the battery based on these Co3 O4 /N-rGO nanosheets demonstrates enhanced and stable electrochemical performance, even under severe deformation. Such batteries, for the first time, can be successfully knitted into clothes without short circuits under external forces and can power various electronic devices and even charge a cellphone.

4.
ACS Appl Mater Interfaces ; 10(1): 796-805, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29240400

ABSTRACT

The primary challenge of developing clean energy conversion/storage systems is to exploit an efficient bifunctional electrocatalyst both for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with low cost and good durability. Here, we synthesized chlorine-doped Co(OH)2 in situ grown on carbon cloth (Cl-doped Co(OH)2) as an integrated electrode by a facial electrodeposition method. The anodic potential was then applied to the Cl-doped Co(OH)2 in an alkaline solution to remove chlorine atoms (electro-oxidation (EO)/Cl-doped Co(OH)2), which can further enhance the electrocatalytic activity without any thermal treatment. EO/Cl-doped Co(OH)2 exhibits a better performance both for ORR and OER in terms of activity and durability because of the formation of a defective structure with a larger electrochemically active surface area after the electrochemical oxidation. This approach provides a new idea for introducing defects and developing active electrocatalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...