Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5596, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961075

ABSTRACT

Microengineering the dielectric layers with three-dimensional microstructures has proven effective in enhancing the sensitivity of flexible pressure sensors. However, the widely employed geometrical designs of solid microstructures exhibit limited sensitivity over a wide range of pressures due to their inherent but undesired structural compressibility. Here, a Marangoni-driven deterministic formation approach is proposed for fabricating hollow microstructures, allowing for greater deformation while retarding structural stiffening during compression. Fluid convective deposition enables solute particles to reassemble in template microstructures, controlling the interior cavity with a void ratio exceeding 90%. The hollow micro-pyramid sensor exhibits a 10-fold sensitivity improvement across wider pressure ranges over the pressure sensor utilizing solid micro-pyramids, and an ultra-low detect limit of 0.21 Pa. With the advantages of facilitation, scalability, and large-area compatibility, such an approach for hollow microstructures can be expanded to other sensor types for superior performance and has considerable potential in robotic tactile and epidermal devices.

2.
Nat Commun ; 13(1): 1856, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35387980

ABSTRACT

The prime editors (PEs) have shown great promise for precise genome modification. However, their suboptimal efficiencies present a significant technical challenge. Here, by appending a viral exoribonuclease-resistant RNA motif (xrRNA) to the 3'-extended portion of pegRNAs for their increased resistance against degradation, we develop an upgraded PE platform (xrPE) with substantially enhanced editing efficiencies in multiple cell lines. A pan-target average enhancement of up to 3.1-, 4.5- and 2.5-fold in given cell types is observed for base conversions, small deletions, and small insertions, respectively. Additionally, xrPE exhibits comparable edit:indel ratios and similarly minimal off-target editing as the canonical PE3. Of note, parallel comparison of xrPE to the most recently developed epegRNA-based PE system shows their largely equivalent editing performances. Our study establishes a highly adaptable platform of improved PE that shall have broad implications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Cell Line , Genome
3.
Mol Ther Nucleic Acids ; 26: 114-121, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34513298

ABSTRACT

Multi-nucleotide variants (MNVs) represent an important type of genetic variation and have biological and clinical significance. To simulate MNVs, we designed four dual-mutation base editors combining hA3A(Y130F), TadA8e(V106W), and protospacer adjacent motif (PAM)-flexible SpRY and selected cytosine and adenine base editor-SpRY (CABE-RY), which had the best editing performance, for further study. Characterization and comparison showed that CABE-RY had a smaller DNA editing window and lower RNA off-target edits than the corresponding single base editors. Thus, we have established a versatile tool to efficiently simulate MNVs over the genome, which could be very useful for functional studies on MNVs in humans.

4.
Funct Integr Genomics ; 20(5): 657-668, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32483723

ABSTRACT

AZC_2928 gene (GenBank accession no. BAF88926.1) of Azorhizobium caulinodans ORS571 has sequence homology to 2,3-aminomutases. However, its function is unknown. In this study, we are for the first time to knock out the gene completely in A. caulinodans ORS571 using the current advanced genome editing tool, CRISPR/Cas9. Our results show that the editing efficiency is 34% and AZC_2928 plays an extremely important role in regulating the formation of chemotaxis and biofilm. CRISPR/Cas9 knockout of AZC_2928 (△AZC_2928) significantly enhanced chemotaxis and biofilm formation. Both chemotaxis and biofilm formation play an important role in nitrogen-fixing bacteria and their interaction with their host plants. Interestingly, AZC_2928 did not affect the motility of A. caulinodans ORS571 and the nodulation formation in their natural host plant, Sesbania rostrata. Due to rhizobia needing to form bacteroids for symbiotic nitrogen fixation in mature nodules, AZC_2928 might have a direct influence on nitrogen fixation efficiency rather than the number of nodulations.


Subject(s)
Azorhizobium caulinodans/genetics , Bacterial Proteins/physiology , CRISPR-Cas Systems , Gene Editing , Azorhizobium caulinodans/growth & development , Azorhizobium caulinodans/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biofilms , Chemotaxis , Gene Knockout Techniques , Genes, Bacterial , Nitrogen Fixation , Plant Root Nodulation , Sequence Analysis, Protein , Sesbania/microbiology , Sesbania/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...