Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(11): 5674-5684, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38391256

ABSTRACT

Passive cooling materials, as a promising choice for mitigating the global energy crisis, have limited use as their cooling effects are usually weakened or lost by dust contamination. In this study, a passive cooling polyethylene (PE) film with self-cleaning properties is prepared by picosecond laser ablation. Numerous root-like hierarchical porous micro/nano-structures were obtained on the double side of the PE film. The outside (toward air) shows excellent self-cleaning, corrosion resistance, and anti-friction properties. The inside (towards crops) further reduced the transmittance and water vapor evaporation (keeping the soil moist). Compared with the pristine PE film, the transmittance of the as-prepared double-sided micro/nano-structured PE film decreased by about 40%. In addition, during the crop cultivation experiment, the temperature of the crop leaves was reduced by 2.7-7 °C and showed a higher plant height and greater leaf width under the cover of the laser-treated film. This demonstrates that the passive cooling PE film has an excellent temperature regulation ability and good practical application effects. This study proposes a simple strategy based on a picosecond laser for the preparation of passive cooling materials, which are beneficial for alleviating energy crises and promoting sustainable development.

2.
ACS Appl Mater Interfaces ; 15(39): 46195-46204, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37747803

ABSTRACT

Solar desalination and fog harvesting are two common ways to obtain fresh water, and both are promising methods to solve the water shortage problem. However, through either the fabrication of interfacial evaporators for solar desalination or the preparation of superwetting surfaces for fog harvesting, current methods suffer from long preparation times, high costs, and low efficiency. Herein, we report an efficient and simple method to process heterogeneous surfaces (HSs) on aluminum (Al) by picosecond laser processing combined with chemical treatment used for fog harvesting and seawater desalination. The as-prepared HS simultaneously consists of regular periodic stripe structures with superhydrophilicity and superhydrophobicity. The spacing of the superhydrophilic and superhydrophobic regions can be adjusted through the processing path. This surface has a 44% improvement in fog harvesting efficiency compared to a pristine Al sheet, which is 0.53 kg·m-2·h-1. Furthermore, it shows a high evaporation rate of 2.35 kg·m-2·h-1 under one sun irradiation with an energy efficiency of 52.39%. Such functional surfaces can be applied to obtain fresh water resources in both coastal regions and arid areas, where water mist is relatively abundant, providing reference and guidance for fresh water collection, and being a promising way to solve the water shortage problem.

3.
Langmuir ; 38(37): 11324-11329, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36059132

ABSTRACT

Heterogeneous surface with superhydrophilic/superhydrophobic stripes (HS-s/sS) has great practical significance, which can be used in fuel cell water management, condensation heat transfer enhancement, underwater drag reduction. Herein, a fast and simple method for uniform HS-s/sS on several mesh materials, including copper, stainless steel, and nickel, is achieved by using picosecond (ps) laser line-by-line scanning. Note that the scanning period between the lines is kept constant during processing, the HS-s/sS is formed by self-organized, while the similar structure cannot be processed on solid metal surfaces using the same parameters. The processing parameters, including scanning speed, defocus amount (DA), scanning period, and single pulse energy are systematically investigated to optimize HS-s/sS fabrication. It is found that the period of processed stripe on the mesh material is ∼1 mm, which is much larger than the scanning period. Interestingly, the as-prepared mesh surface show superhydrophobicity in the convex striped surface and superhydrophilicity in concave striped parts. The scanning electron microscopy results show that the structures on convex stripe are mainly composed of disordered hill-like structures, while the structures on the concave stripe mainly consist of periodic nanostripe structures. Moreover, the proportion of oxygen on the convex stripe is obviously higher than that on the concave stripe. The underlying mechanism of the HS-s/sS formation can be attributed to the interference between surface phonon polaritons (SPP) and the incident picosecond laser, as well as surface shock wave caused by the picosecond laser. We believe that such functional surfaces will be promising candidates for controlling liquid motion and fluid diversion processes.

4.
Langmuir ; 38(6): 2076-2083, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35113574

ABSTRACT

Bioinspired slippery surfaces with excellent abilities, such as antifouling, anticorrosion, and drag reduction, have gained increasing attention due to their multifunction in chemistry, biology, and medicine. However, the present thermally responsive methods used for in situ paraffin-infused slippery surfaces (PISS) are usually based on a surface heat source or certain specific photothermal materials, which seriously hinders their practical applications. Herein, we present a kind of in situ PISS processed by femtosecond laser on nickel (Ni) foam with reversible droplet behavior between sliding and pinning controlled by a point heat source. By alternately loading and unloading the point heat source, switchable wettability for liquid droplets can be achieved. The reaction time of this smart surface to the temperature change is 4.47 ± 1.14 s. The relationship between droplet volumes and inclined angles on four different surfaces is quantitatively investigated. Furthermore, the as-prepared PISS display an impressive self-healing ability. In addition, by flexibly changing the action path of the point heat source, the droplet can realize the movement of different curves. This functional surface and in situ control method will be a promising candidate for manipulating droplet directional sliding behavior and smart temperature-responsive surfaces.

5.
Appl Opt ; 60(35): 10802-10806, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-35200839

ABSTRACT

Here, a double pulse Bessel beam was acquired by modulating a femtosecond laser Gaussian beam from both spatial and temporal scales. The double pulse Bessel beam ablation of silicon was studied systematically. The experimental results showed that when the time delay was 0.5 ps, the ablation efficiency slightly increased. As the time delay increased from 0.5 to 100 ps, the ablation rate was significantly suppressed, which could be attributed to the fact that the time delay was longer than the time for free electron density reaching its maximum value approximately 150 fs. Moreover, the morphology of the ablation spot indicated that the time delay had a significant effect on the changes in morphology. More importantly, a different time delay affected the percentage of oxygen on the processed spot. Finally, using the double pulse Bessel beam ablation of silicon, controllable antireflection and superhydrophobic functional surfaces could be easily obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...