Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38931310

ABSTRACT

BACKGROUND: Sarcopenia is an age-related condition characterized by progressive loss of muscle mass, strength, and function. The occurrence of sarcopenia has a huge impact on physical, psychological, and social health. Therefore, the prevention and treatment of sarcopenia is becoming an important public health issue. METHOD: 35 six-week-old male C57BL/6 mice were randomly divided into five groups, one of which served as a control group, while the rest of the groups were constructed as a model of sarcopenia by intraperitoneal injection of D-galactose. The intervention with lactoferrin, creatine, and their mixtures, respectively, was carried out through gavage for 8 weeks. Muscle function was assessed based on their endurance, hanging time, and grip strength. The muscle tissues were weighed to assess the changes in mass, and the muscle RNA was extracted for myogenic factor expression and transcriptome sequencing to speculate on the potential mechanism of action by GO and KEGG enrichment analysis. RESULT: The muscle mass (lean mass, GAS index), and muscle function (endurance, hanging time, and grip strength) decreased, and the size and structure of myofiber was smaller in the model group compared to the control group. The intervention with lactoferrin and creatine, either alone or combination, improved muscle mass and function, restored muscle tissue, and increased the expression of myogenic regulators. The combined group demonstrated the most significant improvement in these indexes. The RNA-seq results revealed enrichment in the longevity-regulated pathway, MAPK pathway, focal adhesion, and ECM-receptor interaction pathway in the intervention group. The intervention group may influence muscle function by affecting the proliferation, differentiation, senescence of skeletal muscle cell, and contraction of muscle fiber. The combined group also enriched the mTOR-S6K/4E-BPs signaling pathway, PI3K-Akt signaling pathway, and energy metabolism-related pathways, including Apelin signaling, insulin resistance pathway, and adipocytokine signaling pathway, which affect energy metabolism in muscle. CONCLUSIONS: Lactoferrin and creatine, either alone or in combination, were found to inhibit the progression of sarcopenia by influencing the number and cross-sectional area of muscle fibers and muscle protein synthesis. The combined intervention appears to exert a more significant effect on energy metabolism.


Subject(s)
Creatine , Disease Models, Animal , Lactoferrin , Mice, Inbred C57BL , Muscle, Skeletal , Sarcopenia , Animals , Lactoferrin/pharmacology , Male , Sarcopenia/drug therapy , Sarcopenia/metabolism , Creatine/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Mice , Muscle Strength/drug effects , Signal Transduction/drug effects
2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542450

ABSTRACT

Lung aging triggers the onset of various chronic lung diseases, with alveolar repair being a key focus for alleviating pulmonary conditions. The regeneration of epithelial structures, particularly the differentiation from type II alveolar epithelial (AT2) cells to type I alveolar epithelial (AT1) cells, serves as a prominent indicator of alveolar repair. Nonetheless, the precise role of aging in impeding alveolar regeneration and its underlying mechanism remain to be fully elucidated. Our study employed histological methods to examine lung aging effects on structural integrity and pathology. Lung aging led to alveolar collapse, disrupted epithelial structures, and inflammation. Additionally, a relative quantification analysis revealed age-related decline in AT1 and AT2 cells, along with reduced proliferation and differentiation capacities of AT2 cells. To elucidate the mechanisms underlying AT2 cell functional decline, we employed transcriptomic techniques and revealed a correlation between inflammatory factors and genes regulating proliferation and differentiation. Furthermore, a D-galactose-induced senescence model in A549 cells corroborated our omics experiments and confirmed inflammation-induced cell cycle arrest and a >30% reduction in proliferation/differentiation. Physiological aging-induced chronic inflammation impairs AT2 cell functions, hindering tissue repair and promoting lung disease progression. This study offers novel insights into chronic inflammation's impact on stem cell-mediated alveolar regeneration.


Subject(s)
Alveolar Epithelial Cells , Lung , Humans , Alveolar Epithelial Cells/metabolism , Cells, Cultured , Lung/metabolism , Cell Differentiation/physiology , Inflammation/metabolism
3.
Nutrients ; 15(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37111020

ABSTRACT

Sarcopenia, a decrease in skeletal muscle mass and function caused by aging, impairs mobility, raises the risk of fractures, diabetes, and other illnesses, and severely affects a senior's quality of life. Nobiletin (Nob), polymethoxyl flavonoid, has various biological effects, such as anti-diabetic, anti-atherogenic, anti-inflammatory, anti-oxidative, and anti-tumor properties. In this investigation, we hypothesized that Nob potentially regulates protein homeostasis to prevent and treat sarcopenia. To investigate whether Nob could block skeletal muscle atrophy and elucidate its underlying molecular mechanism, we used the D-galactose-induced (D-gal-induced) C57BL/6J mice for 10 weeks to establish a skeletal muscle atrophy model. The findings demonstrated that Nob increased body weight, hindlimb muscle mass, lean mass and improved the function of skeletal muscle in D-gal-induced aging mice. Nob improved myofiber sizes and increased skeletal muscle main proteins composition in D-gal-induced aging mice. Notably, Nob activated mTOR/Akt signaling to increase protein synthesis and inhibited FOXO3a-MAFbx/MuRF1 pathway and inflammatory cytokines, thereby reducing protein degradation in D-gal-induced aging mice. In conclusion, Nob attenuated D-gal-induced skeletal muscle atrophy. It is a promising candidate for preventing and treating age-associated atrophy of skeletal muscles.


Subject(s)
Galactose , Sarcopenia , Mice , Animals , Galactose/metabolism , Sarcopenia/metabolism , Proteostasis , Quality of Life , Mice, Inbred C57BL , Muscular Atrophy/chemically induced , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Aging
4.
Cell Commun Signal ; 21(1): 4, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36604720

ABSTRACT

Autophagy is a multi-step catabolic process that delivers cellular components to lysosomes for degradation and recycling. The dysregulation of this precisely controlled process disrupts cellular homeostasis and leads to many pathophysiological conditions. The mechanistic target of rapamycin (mTOR) is a central nutrient sensor that integrates growth signals with anabolism to fulfil biosynthetic and bioenergetic requirements. mTOR nucleates two distinct evolutionarily conserved complexes (mTORC1 and mTORC2). However, only mTORC1 is acutely inhibited by rapamycin. Consequently, mTORC1 is a well characterized regulator of autophagy. While less is known about mTORC2, the availability of acute small molecule inhibitors and multiple genetic models has led to increased understanding about the role of mTORC2 in autophagy. Emerging evidence suggests that the regulation of mTORC2 in autophagy is mainly through its downstream effector proteins, and is variable under different conditions and cellular contexts. Here, we review recent advances that describe a role for mTORC2 in this catabolic process, and propose that mTORC2 could be a potential clinical target for the treatment of autophagy-related diseases. Video abstract.


Subject(s)
Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Mechanistic Target of Rapamycin Complex 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Sirolimus/pharmacology , Autophagy
5.
Int J Mol Sci ; 23(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36233264

ABSTRACT

Age-associated loss of skeletal muscle mass and function is one of the main causes of the loss of independence and physical incapacitation in the geriatric population. This study used the D-galactose-induced C2C12 myoblast aging model to explore whether nobiletin (Nob) could delay skeletal muscle aging and determine the associated mechanism. The results showed that Nob intervention improved mitochondrial function, increased ATP production, reduced reactive oxygen species (ROS) production, inhibited inflammation, and prevented apoptosis as well as aging. In addition, Nob improved autophagy function, removed misfolded proteins and damaged organelles, cleared ROS, reduced mitochondrial damage, and improved skeletal muscle atrophy. Moreover, our results illustrated that Nob can not only enhance mitochondrial function, but can also enhance autophagy function and the protein synthesis pathway to inhibit skeletal muscle atrophy. Therefore, Nob may be a potential candidate for the prevention and treatment of age-related muscle decline.


Subject(s)
Galactose , Mitochondria , Adenosine Triphosphate/metabolism , Aged , Aging/metabolism , Cellular Senescence , Flavones , Galactose/adverse effects , Galactose/metabolism , Humans , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/drug therapy , Reactive Oxygen Species/metabolism
6.
Food Chem ; 369: 130872, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34455324

ABSTRACT

Tender Coconut water is popular for its deliciousness and nutrition. Mature coconut water, usually discarded as waste in the coconut kernel-based food industry due to its unpleasant flavor, was used as a raw material to make vinegar by liquid-state fermentation. The compounds in fresh coconut water with high odor activity values (OAVs) were isovaleric acid and acetic acid, with pungent sour tastes. The compounds with high OAVs in aged coconut water vinegar were phenylethyl acetate, isoamyl acetate and benzaldehyde, with almond, banana or pear-like aromas. Coconut water vinegar was rich in essential amino acids, especially phenylalanine. Through pathway analysis, seventeen key metabolic pathways and three key metabolic substrates (aspartate, glutamate and pyruvate) were found. According to sensory evaluation, the aged vinegar tastes better. Coconut water vinegar is delicious and nutritious, so reprocessing mature coconut water into vinegar is an appropriate way to reuse waste coconut water.


Subject(s)
Acetic Acid , Cocos , Acetic Acid/analysis , Fermentation , Metabolomics , Nutritive Value , Taste
SELECTION OF CITATIONS
SEARCH DETAIL
...