Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36288214

ABSTRACT

Motor imagery-based brain-computer interfaces (MI-BCIs) features are generally extracted from a wide fixed frequency band and time window of EEG signal. The performance suffers from individual differences in corresponding time to MI tasks. In order to solve the problem, in this study, we propose a novel method named Riemannian sparse optimization and Dempster-Shafer fusion of multi-time-frequency patterns (RSODSF) to enhance the decoding efficiency. First, we effectively combine the Riemannian geometry of the spatial covariance matrix with sparse optimization to extract more robust and distinct features. Second, the Dempster-Shafer theory is introduced and used to fuse each time window after sparse optimization of Riemannian features. Besides, the probabilistic values of the support vector machine (SVM) are obtained and transformed to effectively fuse multiple classifiers to leverage potential soft information of multiple trained SVM. The open-access BCI Competition IV dataset IIa and Competition III dataset IIIa are employed to evaluate the performance of the proposed RSODSF. It achieves higher average accuracy (89.7% and 96.8%) than state-of-the-art methods. The improvement over the common spatial patterns (SFBCSP) are respectively 9.9% and 12.4% (p < 0.01, paired t-test). These results show that our proposed RSODSF method is a promising candidate for the performance improvement of MI-BCI.


Subject(s)
Brain-Computer Interfaces , Imagination , Humans , Electroencephalography/methods , Support Vector Machine , Algorithms
2.
J Neural Eng ; 19(5)2022 09 30.
Article in English | MEDLINE | ID: mdl-36126643

ABSTRACT

Objective.Motor imagery-based brain computer interfaces (MI-BCIs) have been widely researched because they do not demand external stimuli and have a high degree of maneuverability. In most scenarios, superabundant selected channels, fixed time windows, and frequency bands would certainly affect the performance of MI-BCIs due to the neurophysiological diversities among different individuals. In this study, we attempt to effectively use the Riemannian geometry of spatial covariance matrix to extract more robust features and thus enhance the decoding efficiency.Approach.First, we utilize a Riemannian distance-based electroencephalography (EEG) channel selection method, which preliminarily reduces the information redundancy in the first stage. Second, we extract discriminative Riemannian tangent space features of EEG signals of selected channels from the most discriminant time-frequency bands to further enhance decoding accuracy for MI-BCIs. Finally, we train a support vector machine model with a linear kernel to classify our extracted discriminative Riemannian features, and evaluate our proposed method using publicly available BCI Competition IV dataset Ⅰ (DS1) and Competition Ⅲ dataset Ⅲa (DS2).Main results.The experimental results show that the average classification accuracy with the selected 16-channel EEG signals of our method is 90.0% and 89.4% in DS1 and DS2 respectively. The average improvements are 20.0% and 21.2% on DS1, 9.4% and 7.2% on DS2 for 8 and 16 selected channels, respectively.Significance.These results show that our proposed method is a promising candidate for the performance improvement of MI-BCIs.


Subject(s)
Brain-Computer Interfaces , Algorithms , Electroencephalography/methods , Humans , Imagery, Psychotherapy , Imagination/physiology , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...