Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Cell ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779805

ABSTRACT

Microbial communities such as those residing in the human gut are highly diverse and complex, and many with important implications in health and diseases. The effects and functions of these microbial communities are determined not only by their species compositions and diversities but also by the dynamic intra- and inter-cellular states at the transcriptional level. Powerful and scalable technologies capable of acquiring single-microbe-resolution RNA sequencing information in order to achieve comprehensive understanding of complex microbial communities together with their hosts is therefore utterly needed. Here we report the development and utilization of a droplet-based smRNA-seq (single-microbe RNA sequencing) method capable of identifying large species varieties in human samples, which we name smRandom-seq2. Together with a triple-module computational pipeline designed for the bacteria and bacteriophage sequencing data by smRandom-seq2 in four human gut samples, we established a single-cell level bacterial transcriptional landscape of human gut microbiome, which included 29,742 single microbes and 329 unique species. Distinct adaptive responses states among species in Prevotella and Roseburia genus and intrinsic adaptive strategy heterogeneity in Phascolarctobacterium succinatutens were uncovered. Additionally, we identified hundreds of novel host-phage transcriptional activity associations in the human gut microbiome. Our results indicated the smRandom-seq2 is a high-throughput and high-resolution smRNA-seq technique that is highly adaptable to complex microbial communities in real-word situations and promises new perspectives in the understanding of human microbiomes.

2.
Gut Microbes ; 15(1): 2223340, 2023.
Article in English | MEDLINE | ID: mdl-37306468

ABSTRACT

The antibiotic resistome is the collection of all antibiotic resistance genes (ARGs) present in an individual. Whether an individual's susceptibility to infection and the eventual severity of coronavirus disease 2019 (COVID-19) is influenced by their respiratory tract antibiotic resistome is unknown. Additionally, whether a relationship exists between the respiratory tract and gut ARGs composition has not been fully explored. We recruited 66 patients with COVID-19 at three disease stages (admission, progression, and recovery) and conducted a metagenome sequencing analysis of 143 sputum and 97 fecal samples obtained from them. Respiratory tract, gut metagenomes, and peripheral blood mononuclear cell (PBMC) transcriptomes are analyzed to compare the gut and respiratory tract ARGs of intensive care unit (ICU) and non-ICU (nICU) patients and determine relationships between ARGs and immune response. Among the respiratory tract ARGs, we found that Aminoglycoside, Multidrug, and Vancomycin are increased in ICU patients compared with nICU patients. In the gut, we found that Multidrug, Vancomycin, and Fosmidomycin were increased in ICU patients. We discovered that the relative abundances of Multidrug were significantly correlated with clinical indices, and there was a significantly positive correlation between ARGs and microbiota in the respiratory tract and gut. We found that immune-related pathways in PBMC were enhanced, and they were correlated with Multidrug, Vancomycin, and Tetracycline ARGs. Based on the ARG types, we built a respiratory tract-gut ARG combined random-forest classifier to distinguish ICU COVID-19 patients from nICU patients with an AUC of 0.969. Cumulatively, our findings provide some of the first insights into the dynamic alterations of respiratory tract and gut antibiotic resistome in the progression of COVID-19 and disease severity. They also provide a better understanding of how this disease affects different cohorts of patients. As such, these findings should contribute to better diagnosis and treatment scenarios.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Anti-Bacterial Agents , Vancomycin , Leukocytes, Mononuclear , Respiratory System , Patient Acuity
3.
Brief Bioinform ; 23(6)2022 11 19.
Article in English | MEDLINE | ID: mdl-36259363

ABSTRACT

Robust strategies to identify patients at high risk for tumor metastasis, such as those frequently observed in intrahepatic cholangiocarcinoma (ICC), remain limited. While gene/protein expression profiling holds great potential as an approach to cancer diagnosis and prognosis, previously developed protocols using multiple diagnostic signatures for expression-based metastasis prediction have not been widely applied successfully because batch effects and different data types greatly decreased the predictive performance of gene/protein expression profile-based signatures in interlaboratory and data type dependent validation. To address this problem and assist in more precise diagnosis, we performed a genome-wide integrative proteome and transcriptome analysis and developed an ensemble machine learning-based integration algorithm for metastasis prediction (EMLI-Metastasis) and risk stratification (EMLI-Prognosis) in ICC. Based on massive proteome (216) and transcriptome (244) data sets, 132 feature (biomarker) genes were selected and used to train the EMLI-Metastasis algorithm. To accurately detect the metastasis of ICC patients, we developed a weighted ensemble machine learning method based on k-Top Scoring Pairs (k-TSP) method. This approach generates a metastasis classifier for each bootstrap aggregating training data set. Ten binary expression rank-based classifiers were generated for detection of metastasis separately. To further improve the accuracy of the method, the 10 binary metastasis classifiers were combined by weighted voting based on the score from the prediction results of each classifier. The prediction accuracy of the EMLI-Metastasis algorithm achieved 97.1% and 85.0% in proteome and transcriptome datasets, respectively. Among the 132 feature genes, 21 gene-pair signatures were developed to establish a metastasis-related prognosis risk-stratification model in ICC (EMLI-Prognosis). Based on EMLI-Prognosis algorithm, patients in the high-risk group had significantly dismal overall survival relative to the low-risk group in the clinical cohort (P-value < 0.05). Taken together, the EMLI-ICC algorithm provides a powerful and robust means for accurate metastasis prediction and risk stratification across proteome and transcriptome data types that is superior to currently used clinicopathological features in patients with ICC. Our developed algorithm could have profound implications not just in improved clinical care in cancer metastasis risk prediction, but also more broadly in machine-learning-based multi-cohort diagnosis method development. To make the EMLI-ICC algorithm easily accessible for clinical application, we established a web-based server for metastasis risk prediction (http://ibi.zju.edu.cn/EMLI/).


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Proteome , Algorithms , Cholangiocarcinoma/genetics , Machine Learning , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic/pathology , Risk Assessment
4.
Enzyme Microb Technol ; 150: 109895, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34489048

ABSTRACT

5-Hydroxymethylfurfural oxidase (HMFO) can catalyze both hydroxyl and aldehyde oxidations. It catalyzes 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid. However, the application of HMFO encountered two problems: the expressed HMFO in Escherichia coli. is largely in the form of inclusion bodies, and the by-product of H2O2 has a negative effect on HMFO stability. To solve these problems, recombinant HMFO was generated by fusing the C-terminus to an elastin-like polypeptide (ELP). ELP-HMFO can be expressed with significantly reduced inclusion bodies. ELP-HMFO exhibited improved stability and tolerance toward H2O2. Further recombination is carried out by fusing the N-terminus of HMFO to a glutamic acid-rich leucine zipper motif (ZE). Similarly, recombinant catalase (CAT) is generated by fusing the N-terminus to ELP and fusing the C-terminus to an arginine-rich leucine zipper motif (ZR). ELP-HMFO-ZE can interact specifically with ZR-CAT-ELP, ascribing to the coiled-coil association of ZE and ZR. ELP-HMFO-ZE#ZR-CAT-ELP coordinates the respective catalytic activities of the two enzymes. ELP-HMFO-ZE catalyzes the oxidation of HMF, and the generated hydrogen peroxide is decomposed by ZR-CAT-ELP into H2O and oxygen. During the oxidation of HMF, the cofactor FAD of HMFO is reduced, and molecular oxygen is needed to reoxidize the reduced FAD. The evolved oxygen from the decomposing of H2O2 can just meet the requirement, which can be diffused efficiently from ZR-CAT-ELP to ELP-HMFO-ZE due to the short distance between the two enzymes.


Subject(s)
Furaldehyde , Hydrogen Peroxide , Catalase , Dicarboxylic Acids , Elastin , Furaldehyde/analogs & derivatives , Furans
SELECTION OF CITATIONS
SEARCH DETAIL
...