Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(27): 19206-19218, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38882474

ABSTRACT

Electrocoagulation technology, due to its simplicity and ease of operation, is often considered for treating arsenic-contaminated groundwater. However, challenges such as anode wear have hindered its development and application. This study aims to develop a siderite-filled anode electrocoagulation system for efficient removal of As(iii) and investigate its effectiveness. The impact of operational parameters on the removal rate of As(iii) was analyzed through single-factor tests, and the stability and superiority of the device were evaluated. The response surface methodology was employed to analyze the interactions between various factors and determine the optimal operational parameters by integrating data from these tests. Under conditions where the removal rate of As reached 99.3 ± 0.37%, with an initial concentration of As(iii) at 400 µg L-1, current intensity at 30 mA, initial solution pH value at 7, and Na2SO4 concentration at 10 mM. The flocculant used was subjected to characterization analysis to examine its structure, morphology, and elemental composition under these optimal operational parameters. The oxidation pathway for As(iii) within this system relies on integrated results from direct electrolysis as well as ˙O2 -, ˙OH, and Fe(iv) mediated oxidation processes. The elimination of arsenic encompasses two fundamental mechanisms: firstly, the direct adsorption of As(iii) by highly adsorbent flocculants like γ-FeOOH and magnetite (Fe3O4); secondly, the oxidation of As(iii) into As(v), followed by its reaction with siderite or other compounds to generate a dual coordination complex or iron arsenate, thus expediting its eradication. The anodic electrocoagulation system employing siderite as a filler exhibits remarkable efficiency and cost-effectiveness, while ensuring exceptional stability, thereby providing robust theoretical underpinnings for the application of electrocoagulation technology in arsenic removal.

2.
J Hazard Mater ; 476: 135002, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925050

ABSTRACT

Designing an electrode that can generate abundant free radicals and 1O2, which can effectively degrade and detoxify organophosphorus pesticides (OPPs) through a co-oxidation pathway, is important. In this study, we prepared a electrode GO/MoS2@AS by supporting MoS2 on alum sludge (AS) under graphene oxide (GO) nanoconfinement. The results show that the dominant role of 1O2 at the cathode and •OHads at the anode for degradation, in addition to the involvement of 1O2 in the cathodic degradation mechanism, can be attributed to the abundant precursor •O2- and H2O2. Furthermore, calculations using density functional theory and toxicity prediction of products show that the energy (∆E) requirements of •OHfree to break the C-O bond of the pyridine ring and phosphate group are higher than that required for 1O2, and this non-radical oxidation plays a key role in detoxification. In contrast, accelerating ring opening and oxidation processes are attributed to radical oxidation. Above all, the cathodic detoxification is more effective than anodic detoxification. Three prevalent OPPs, chlorpyrifos, glyphosate, and trichlorfon, were degraded in the GO/MoS2@AS system by over 90 %, with mineralization rates of 76.66 %, 85.46 %, and 82.18 %, respectively. This study provides insights into the co-oxidation degradation and detoxification mechanism mediated by 1O2 and •OHfree.

3.
Bioresour Technol ; 403: 130866, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777231

ABSTRACT

Attachment of microalgae on the inner surfaces of photobioreactors impacts the efficiency of swine wastewater treatment by reducing the light intensity, which has been overlooked in previous studies. This study investigated the relationship between microalgal attachment biomass and light intensity in photobioreactors, determined the optimal attachment time for effective pollutant removal, and clarified the mechanisms of microalgal attachment in swine wastewater. After 9 days of treatment, the attached biomass in the photobioreactor increased from 0 to 6.4 g/m2, decreasing the light intensity from 2,000 to 936 lux. At the 24 h optimal attachment time, the concentrations of chemical oxygen demand, ammonia nitrogen, and total phosphorus decreased from 2725.1, 396.4, and 87.2 mg/L to 361.2, 4.9, and 0.8 mg/L, respectively. Polysaccharides in the extracellular polymeric substances released by microalgae play a significant role in facilitating microalgae attachment. Optimizing the microalgal attachment time within photobioreactors effectively mitigates pollutant concentrations in swine wastewater.


Subject(s)
Microalgae , Photobioreactors , Wastewater , Animals , Wastewater/chemistry , Microalgae/metabolism , Swine , Water Purification/methods , Biomass , Phosphorus , Nitrogen , Biological Oxygen Demand Analysis , Light
4.
RSC Adv ; 14(20): 13711-13718, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38681833

ABSTRACT

Fluoride pollution in water has garnered significant attention worldwide. The issue of fluoride removal remains challenging in areas not covered by municipal water systems. The industrial aluminum electrode and natural bauxite coordinated defluorination system (IE-BA) have been employed for fluoride removal. The experiment investigated the effects of pH, current density, and inter-electrode mineral layer thickness on the defluorination process of IE-BA. Additionally, the study examined the treatment efficiency of IE-BA for simulated water with varying F- concentrations and assessed its long-term performance. The results demonstrate that the defluorination efficiency can reach 98.4% after optimization. Moreover, irrespective of different fluoride concentrations, the defluorination rate exceeds 95.2%. After 72 hours of continuous operation, the defluorination rate reached 91.9%. The effluent exhibited weak alkalinity with a pH of around 8.0, and the voltage increased by 2.0 V compared to the initial moment. By analyzing the characterization properties of minerals and flocs, this study puts forward the possible defluorination mechanism of the IE-BA system. The efficacy of the IE-BA system in fluoride removal from water was ultimately confirmed, demonstrating its advantages in terms of defluorination ability under different initial conditions and resistance to complex interference. This study demonstrates that the IE-BA technology is a promising approach for defluorination.

5.
J Hazard Mater ; 471: 134457, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38688224

ABSTRACT

Few reports have focused on using particle electrodes with polar adsorbent properties in heterogeneous electro-Fenton (EF) system to improve the degradation of hydrophilic organic pollutants (HLOPs). In this study, a hydrophilic electrode Sn-Sb/AS was prepared by supporting metals Sn and Sb on alum sludge (AS), which can effectively degrade 91.68%, 92.54%, 89.62%, and 96.24% of the four types of HLOPs, chlorpyrifos (CPF), atrazine (ATZ), diuron (DIU), and glyphosate (PMG), respectively, within 40 min. The mineralization rates were 82.37%, 78.93%, 73.98%, and 85.65% for CPF, ATZ, DIU, and PMG, respectively. Based on the analysis of Electron Paramagnetic Resonance test, quenching test, and identified anthracene endoperoxide, the degradation at the cathode was attributed to non-radical oxidation via interaction with 1O2. In contrast, the anodic oxidation occurred via direct electron transfer at the anode and/or oxidation via interaction with adsorbed •OH (•OHads) around the particle electrodes. Furthermore, the reaction sites were calculated by Density functional theory (DFT) and Fukui function, corresponding to the electrophilic attack (fA-) of 1O2 and anodic direct oxidation, besides, the radical attack (fA0) of •OH(ads). Herein, this study proposes a targeted elimination strategy for HLOPs in wastewater treatment using particle electrodes with polar adsorbent properties in EF system.

6.
RSC Adv ; 13(13): 8944-8954, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36936850

ABSTRACT

In this study, we developed an airlift-electrocoagulation (AL-EC) reactor to remove norfloxacin (NOR) from water. Six parameters influencing NOR removal were investigated, and the possible removal mechanism was proposed based on flocs characterization and intermediates analysis. The performances for treating different antibiotics and removing NOR from 3 types of water were also evaluated. The best NOR removal efficiency was obtained with the iron anode and aluminum cathode combination, a current density of 2 mA cm-2, an initial pH of 7, a treatment time of 32 minutes and an air flow rate of 200 mL min-1, the supporting electrolyte type was NaCl, and the initial NOR concentration was 10 mg L-1. Flocs adsorption and electrochemical oxidation were the main ways to remove NOR from water. The average removal efficiency of the AL-EC reactor exceeded 60% of the different antibiotic concentrations in artificial and real water. The highest NOR removal rate reached 93.48% with an operating cost of 0.153 USD m-3. The present work offers a strategy for NOR removal from water with high efficiency and low cost, showing a huge potential for the application of the AL-EC in antibiotic contaminated water treatment.

7.
J Hazard Mater ; 440: 129785, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36007366

ABSTRACT

As a promising technology, the microalgae-driven strategy can achieve environmentally sustainable and economically viable swine wastewater treatment. Currently, most microalgae-based research focuses on remediation improvement and biomass accumulation, while information on the removal mechanisms and dominant microorganisms is emerging but still limited. In this review, the major removal mechanisms of pollutants and pathogenic bacteria are systematically discussed. In addition, the bacterial and microalgal community during the swine wastewater treatment process are summarized. In general, Blastomonas, Flavobacterium, Skermanella, Calothrix and Sedimentibacter exhibit a high relative abundance. In contrast to the bacterial community, the microalgal community does not change much during swine wastewater treatment. Additionally, the effects of various parameters (characteristics of swine wastewater and cultivation conditions) on microalgal growth and current challenges in the microalgae-driven biotreatment process are comprehensively introduced. This review stresses the need to integrate bacterial and microalgal ecology information into the conventional design of full-scale swine wastewater treatment systems and operations. Herein, future research needs are also proposed, which will facilitate the development and operation of a more efficient microalgae-based swine wastewater treatment process.


Subject(s)
Environmental Pollutants , Microalgae , Microbiota , Animals , Biomass , Nitrogen , Nutrients , Swine , Wastewater/microbiology
8.
Bioresour Technol ; 351: 127019, 2022 May.
Article in English | MEDLINE | ID: mdl-35306129

ABSTRACT

Microalgal-bacterial system (MBS) is potential biotechnology in wastewater treatment because it can remedy defects of conventional processes (e.g., insufficient carbon source and imbalanced elements ratio). However, the mechanisms of nitrogen (N) transport and removal in MBS are still unclear. In this study, it was discovered that MBS was conducive to adsorb NH4+-N and NO3--N through electrical neutralization, while extracellular polymeric substances (EPS) could provide binding sites (e.g., -OH and -CH3) for enhancing N transport and removal. The microalgae-bacteria interaction could accelerate N transport and removal from aqueous solution to cell. More importantly, the microalgal starch biosynthetic metabolism exhibited demonstrating the energy production potential could be boosted via MBS. Overall, the NO3--N and NH4+-N removal efficiencies, and energy yield were 82.28%, 94.15%, and 86.81 kJ/L, respectively, which are better than other relevant studies. Altogether, it is meaningful for revealing the applicability of MBS for treating wastewater and producing energy.


Subject(s)
Microalgae , Bacteria , Biomass , Carbon , Nitrogen , Phosphorus , Wastewater
9.
J Hazard Mater ; 418: 126264, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34118545

ABSTRACT

Much attention has been paid to developing methods capable of synchronous removal of pollutants from swine wastewater. Due to the natural symbiotic interactions between microalgae and bacteria, the microalgae-bacteria symbiosis (ABS) system has been found to have potential for treating wastewater. However, the corresponding biological mechanisms in the ABS system and the role of dynamic microbial community evolution in pollutant removal systems remain poorly understood. Therefore, we investigate the potential of an ABS system for pollutant removal applications and analyze the bacterial consortium symbiotically combined with Chlorella sp. MA1 and Coelastrella sp. KE4. The NH4+-N and PO43--P removal efficiencies were significantly increased from 12.79% to 99.52% and 35.66% to 96.06% due to biotic interactions between the microalgae and bacteria. The abundance of bacterial taxa and genes related to oxidative stress, cell growth and nitrogen transfer were found to increase in response to photosynthesis, respiration and NH4+-N uptake. Furthermore, pathogen inactivation was induced via microalgae, co-driven by microbial succession under high dissolved oxygen conditions. In this microalgae-enhanced ABS system, the interactions between microalgae and bacteria are established for pathogens elimination and nitrogen cycling, verifying that the ABS system is an effective and environmentally sustainable swine wastewater treatment method.


Subject(s)
Chlorella , Microalgae , Animals , Bacteria/genetics , Biomass , Nitrogen , Swine , Symbiosis , Wastewater
10.
Bioresour Technol ; 305: 123072, 2020 Feb 22.
Article in English | MEDLINE | ID: mdl-32163881

ABSTRACT

This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along with high pollutant removal efficiencies (chemical oxygen demand: 81%, total nitrogen: 96%, total phosphate: nearly 100%) by optimizing culture conditions and using an appropriate operation strategy. Through a cell-displayed technology that utilizes combined engineered system, a maximum microalgal bioethanol yield of 61 g/L was achieved. This is the first report demonstrating the highest microalgal carbohydrate productivity using swine wastewater without any pretreatments associated with direct high-density bioethanol production from the subsequent microalgal biomass. This work may represent a breakthrough in achieving feasible microalgal bioethanol conversion from real swine wastewater.

11.
Materials (Basel) ; 12(20)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614518

ABSTRACT

The distribution homogeneity of grain size affects the fluidity of the semi-solid slurry, which in turn affects the properties of the casting. One key factor affecting grain size uniformity resides in the nucleation number, which has been studied thoroughly, while the other factor is temperature gradient which has not been investigated yet. In this study, the microstructure evolutions under certain temperature gradients are investigated by experiment and simulation using a two-dimensional quantitative phase-field (PF) model. A parallel and adaptive mesh refinement algorithm is adopted to solve the nonlinear phase-field equations. The results indicate that temperature gradient can affect the size distribution of microstructure in the semi-solid slurry prepared by the SEED process. A higher temperature gradient (in the range of 0.230~0.657 °C/mm) along the radial direction is beneficial to the homogeneity of the grain size in a slurry.

12.
Bioresour Technol ; 289: 121702, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31260935

ABSTRACT

In this study, a newly discovered microalga Parachlorella kessleri QWY28 with a superior ability to treat real swine wastewater, was isolated and explored. The optimal culture conditions of 30 °C and 600 µmol/m2·s were set to improve the practical application potential, achieving maximum pollutant removal efficiencies of 88% COD, 95% TN and almost 100% TP, with carbohydrate production at 646 mg/L·d. These results present the highest efficiencies reported to date, for non-sterilized real swine wastewater without pretreatment. These findings support the practical feasibility of combined microalgal swine wastewater purification and energy production systems.


Subject(s)
Carbohydrates/biosynthesis , Chlorophyta/metabolism , Microalgae/metabolism , Waste Disposal, Fluid/methods , Wastewater/chemistry , Animals , Swine
13.
Materials (Basel) ; 12(11)2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31174266

ABSTRACT

Application of a coating on a mold surface is widely used in the foundry industry. Changes in coating change the heat transfer at the mold-melt interface, which influences the microstructure of the casting. In this study, the effect of boron nitride coating thickness on the interfacial heat transfer and slug microstructure in the Swirled Enthalpy Equilibration Device (SEED) process was investigated. The temperatures of the semi-solid slug and mold were measured, and the interfacial heat transfer coefficient and heat flux of the mold-slug interface was estimated based on these data. Microstructures of the quenched slugs were also examined. The results indicated that the interfacial heat transfer coefficient decreased with an increase in coating thickness and was sensitive to a coating thickness of less than 0.1 mm. The interfacial heat flux decreased sharply at the early stage, and then slowed down as the swirling time increased and the coating thickened. The coating thickness affected the temperature evolution of the slug at the early stage of the SEED process. As the coating thickness increased from near zero to 1.0 mm, the grain size of the slug increased by ~20 µm and the globular structure of the slug transformed into a dendritic structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...