Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
2.
Nanotechnology ; 28(9): 095301, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28071590

ABSTRACT

How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

3.
Kidney Int ; 60(5): 1699-704, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11703587

ABSTRACT

BACKGROUND: Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase (NOS) that accumulates in renal insufficiency and may be a uremic toxin. To determine whether ADMA inhibits bone metabolism, we investigated the in vitro effect of ADMA on osteoblastic differentiation in mouse bone marrow-derived mesenchymal stem cells (BMSCs). METHODS: The effect of ADMA on nitric oxide (NO) production was determined by measuring the stable end product of NO, nitrite, in the culture medium using commercial NO kit. The temporal sequence of osteoblastic differentiation in BMSCs was assessed in the presence and absence of ADMA by measuring alkaline phosphatase (ALP) activity, mineralization, and osteoblast gene expression at 0, 4, 8, 12 days of culture. RESULTS: ADMA (5, 50, 500 micromol. L-1) resulted in a dose-dependent decrease in nitrite formation in conditioned media of BMCS cultures, consistent with inhibition of NOS. ADMA treatment was associated with reduced ALP activity, calcium deposition and osteoblast-related gene expression in BMSCs cultures. Concurrent treatment with l-arginine (3600 micromol. L-1) reversed the ADMA (500 micromol. L-1)-mediated decrease in NO production, restored the differentiation potential of BMSCs, and significantly attenuated the down-regulation of Cbfa1 and osteocalcin gene expression by ADMA. CONCLUSIONS: ADMA inhibition of the NO-NOS pathway in BMSCs impairs osteoblastic differentiation of mouse BMSC cultures. These studies further support a role of NO in the local regulation of bone metabolism and the possibility that ADMA may act as uremic toxin on bone through its effect to inhibit NO actions in osteoblasts.


Subject(s)
Arginine/analogs & derivatives , Arginine/pharmacology , Osteoblasts/drug effects , Alkaline Phosphatase/metabolism , Animals , Arginine/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/physiology , Cell Differentiation/drug effects , Cells, Cultured , Female , Kidney Failure, Chronic/metabolism , Mice , Nitric Oxide/biosynthesis , Osteoblasts/physiology , RNA, Messenger/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...