Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38978567

ABSTRACT

Identifying cell types and states remains a time-consuming, error-prone challenge for spatial biology. While deep learning is increasingly used, it is difficult to generalize due to variability at the level of cells, neighborhoods, and niches in health and disease. To address this, we developed TACIT, an unsupervised algorithm for cell annotation using predefined signatures that operates without training data. TACIT uses unbiased thresholding to distinguish positive cells from background, focusing on relevant markers to identify ambiguous cells in multiomic assays. Using five datasets (5,000,000-cells; 51-cell types) from three niches (brain, intestine, gland), TACIT outperformed existing unsupervised methods in accuracy and scalability. Integrating TACIT-identified cell types with a novel Shiny app revealed new phenotypes in two inflammatory gland diseases. Finally, using combined spatial transcriptomics and proteomics, we discovered under- and overrepresented immune cell types and states in regions of interest, suggesting multimodality is essential for translating spatial biology to clinical applications.

2.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895230

ABSTRACT

Identifying cell types and states remains a time-consuming and error-prone challenge for spatial biology. While deep learning is increasingly used, it is difficult to generalize due to variability at the level of cells, neighborhoods, and niches in health and disease. To address this, we developed TACIT, an unsupervised algorithm for cell annotation using predefined signatures that operates without training data, using unbiased thresholding to distinguish positive cells from background, focusing on relevant markers to identify ambiguous cells in multiomic assays. Using five datasets (5,000,000-cells; 51-cell types) from three niches (brain, intestine, gland), TACIT outperformed existing unsupervised methods in accuracy and scalability. Integration of TACIT-identified cell with a novel Shiny app revealed new phenotypes in two inflammatory gland diseases. Finally, using combined spatial transcriptomics and proteomics, we discover under- and overrepresented immune cell types and states in regions of interest, suggesting multimodality is essential for translating spatial biology to clinical applications.

3.
Nat Commun ; 15(1): 5016, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876998

ABSTRACT

Periodontitis affects billions of people worldwide. To address relationships of periodontal niche cell types and microbes in periodontitis, we generated an integrated single-cell RNA sequencing (scRNAseq) atlas of human periodontium (34-sample, 105918-cell), including sulcular and junctional keratinocytes (SK/JKs). SK/JKs displayed altered differentiation states and were enriched for effector cytokines in periodontitis. Single-cell metagenomics revealed 37 bacterial species with cell-specific tropism. Fluorescence in situ hybridization detected intracellular 16 S and mRNA signals of multiple species and correlated with SK/JK proinflammatory phenotypes in situ. Cell-cell communication analysis predicted keratinocyte-specific innate and adaptive immune interactions. Highly multiplexed immunofluorescence (33-antibody) revealed peri-epithelial immune foci, with innate cells often spatially constrained around JKs. Spatial phenotyping revealed immunosuppressed JK-microniches and SK-localized tertiary lymphoid structures in periodontitis. Here, we demonstrate impacts on and predicted interactomics of SK and JK cells in health and periodontitis, which requires further investigation to support precision periodontal interventions in states of chronic inflammation.


Subject(s)
Cell Communication , Keratinocytes , Periodontitis , Single-Cell Analysis , Humans , Keratinocytes/metabolism , Keratinocytes/immunology , Periodontitis/microbiology , Periodontitis/metabolism , Periodontitis/immunology , Periodontitis/pathology , Cytokines/metabolism , Periodontium/microbiology , Periodontium/metabolism , Periodontium/pathology , Immunity, Innate , In Situ Hybridization, Fluorescence , Male , Metagenomics/methods , Bacteria/metabolism , Bacteria/genetics , Female , Adult , Adaptive Immunity
4.
J Biol Chem ; 300(6): 107322, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677511

ABSTRACT

Obesity-induced metabolic dysfunction-associated steatohepatitis (MASH) leads to hepatocellular carcinoma (HCC). Astrocyte-elevated gene-1/Metadherin (AEG-1/MTDH) plays a key role in promoting MASH and HCC. AEG-1 is palmitoylated at residue cysteine 75 (Cys75) and a knock-in mouse representing mutated Cys75 to serine (AEG-1-C75S) showed activation of MASH- and HCC-promoting gene signature when compared to wild-type littermates (AEG-1-WT). The liver consists of three zones, periportal, mid-lobular, and pericentral, and zone-specific dysregulated gene expression impairs metabolic homeostasis in the liver, contributing to MASH and HCC. Here, to elucidate how palmitoylation influences AEG-1-mediated gene regulation in regard to hepatic zonation, we performed spatial transcriptomics (ST) in the livers of AEG-1-WT and AEG-1-C75S littermates. ST identified six different clusters in livers and using zone- and cell-type-specific markers we attributed specific zones and cell types to specific clusters. Ingenuity Pathway Analysis (IPA) of differentially expressed genes in each cluster unraveled activation of pro-inflammatory and MASH- and HCC-promoting pathways, mainly in periportal and pericentral hepatocytes, in AEG-1-C75S liver compared to AEG-1-WT. Interestingly, in AEG-1-C75S liver, the mid-lobular zone exhibited widespread inhibition of xenobiotic metabolism pathways and inhibition of PXR/RXR and LXR/RXR activation, versus AEG-1-WT. In conclusion, AEG-1-C75S mutant exhibited zone-specific differential gene expression, which might contribute to metabolic dysfunction and dysregulated drug metabolism leading to MASH and HCC.


Subject(s)
Lipoylation , Liver , Membrane Proteins , RNA-Binding Proteins , Animals , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Liver/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Transcriptome , Gene Expression Regulation , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Male
5.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38662583

ABSTRACT

MOTIVATION: The rapid expansion of Bioinformatics research has led to a proliferation of computational tools for scientific analysis pipelines. However, constructing these pipelines is a demanding task, requiring extensive domain knowledge and careful consideration. As the Bioinformatics landscape evolves, researchers, both novice and expert, may feel overwhelmed in unfamiliar fields, potentially leading to the selection of unsuitable tools during workflow development. RESULTS: In this article, we introduce the Bioinformatics Tool Recommendation system (BTR), a deep learning model designed to recommend suitable tools for a given workflow-in-progress. BTR leverages recent advances in graph neural network technology, representing the workflow as a graph to capture essential context. Natural language processing techniques enhance tool recommendations by analyzing associated tool descriptions. Experiments demonstrate that BTR outperforms the existing Galaxy tool recommendation system, showcasing its potential to streamline scientific workflow construction. AVAILABILITY AND IMPLEMENTATION: The Python source code is available at https://github.com/ryangreenj/bioinformatics_tool_recommendation.


Subject(s)
Computational Biology , Software , Workflow , Computational Biology/methods , Deep Learning , Natural Language Processing
6.
Gynecol Oncol Rep ; 52: 101360, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38549702

ABSTRACT

Objective: Endometrial cancer (EC) incidence and mortality are increasing with striking racial disparities. Race and obesity are known risk factors for EC, however, their relationship and impact on tumor biology in higher grade endometrioid EC are unclear. The objective of this pilot study was to identify gene- and pathway-level changes in tumors from Black patients compared to White, both in general and in the context of dichotomized BMI. Methods: A single institution retrospective convenience sample was obtained for grade 2 or 3 endometrioid EC, equally distributed amongst Black and White patients. Tumor samples were analyzed with the Tempus Laboratories xT NGS-based genome profiling test. DESeq2 was applied to identify differentially expressed genes, and then subjected to ingenuity pathway analysis (IPA). Continuous variables were analyzed using unpaired t-tests, and categorical using Chi-squared and Fisher exact tests. Results: 39 representative cases were identified and analyzed from 2006 to 2021. Baseline clinicopathologic characteristics were similar. 157 genes were differentially expressed in tumors from Black patients compared to White regardless of BMI. IPA identified 81 significantly different pathways between Black and White patients with a BMI < 40 kg/m2, and 117 with a BMI ≥ 40 kg/m2. Of these, eleven pathways were consistently and significantly activated or deactivated regardless of BMI. Conclusion: Differences in gene expression and pathway activation in EC exist between race and BMI, which highlights the need for further research to better understand the implications of these differences on endometrioid EC progression, outcomes, and treatment in this historically underserved patient population.

7.
Transl Psychiatry ; 14(1): 59, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272911

ABSTRACT

The neurobiological origins of social behaviors are incompletely understood. Here we utilized synthetic biology approaches to reprogram the function of ZFP189, a transcription factor whose expression and function in rodent prefrontal cortex was previously demonstrated to be protective against stress-induced social deficits. We created novel synthetic ZFP189 transcription factors including ZFP189VPR, which activates the transcription of target genes and therefore exerts opposite functional control from the endogenous, transcriptionally repressive ZFP189WT. Following viral delivery of these synthetic ZFP189 transcription factors to mouse prefrontal cortex, we observe that ZFP189-mediated transcriptional control promotes mature dendritic spine morphology on transduced pyramidal neurons. Interestingly, inversion of ZFP189-mediated transcription in this brain area, achieved by viral delivery of synthetic ZFP189VPR, precipitates social behavioral deficits in terms of social interaction, motivation, and the cognition necessary for the maintenance of social hierarchy, without other observable behavioral deficits. RNA sequencing of virally manipulated prefrontal cortex tissues reveals that ZFP189 transcription factors of opposing regulatory function (ZFP189WT versus ZFP189VPR) have opposite influence on the expression of genetic transposable elements as well as genes that participate in adaptive immune functions. Collectively, this work reveals that ZFP189 function in the prefrontal cortex coordinates structural and transcriptional neuroadaptations necessary for complex social behaviors while regulating transposable element-rich regions of DNA and the expression of immune-related genes. Given the evidence for a co-evolution of social behavior and the brain immune response, we posit that ZFP189 may have evolved to augment brain transposon-associated immune function as a way of enhancing an animal's capacity for functioning in social groups.


Subject(s)
DNA Transposable Elements , Transcription Factors , Mice , Animals , Transcription Factors/genetics , Prefrontal Cortex/metabolism , Social Behavior , Zinc Fingers/genetics , Rodentia/genetics , Rodentia/metabolism , Immunity
8.
Res Sq ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38196575

ABSTRACT

Sjögren's Disease (SjD) is a systemic autoimmune disease without a clear etiology or effective therapy. Utilizing unbiased single-cell and spatial transcriptomics to analyze human minor salivary glands in health and disease we developed a comprehensive understanding of the cellular landscape of healthy salivary glands and how that landscape changes in SjD patients. We identified novel seromucous acinar cell types and identified a population of PRR4+CST3+WFDC2- seromucous acinar cells that are particularly targeted in SjD. Notably, GZMK +CD8 T cells, enriched in SjD, exhibited a cytotoxic phenotype and were physically associated with immune-engaged epithelial cells in disease. These findings shed light on the immune response's impact on transitioning acinar cells with high levels of secretion and explain the loss of this specific cell population in SjD. This study explores the complex interplay of varied cell types in the salivary glands and their role in the pathology of Sjögren's Disease.

9.
Cancer Res Commun ; 4(2): 388-403, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38265267

ABSTRACT

Two important factors that contribute to resistance to immune checkpoint inhibitors (ICI) are an immune-suppressive microenvironment and limited antigen presentation by tumor cells. In this study, we examine whether inhibition of the methyltransferase enhancer of zeste 2 (EZH2) can increase ICI response in lung squamous cell carcinomas (LSCC). Our in vitro experiments using two-dimensional human cancer cell lines as well as three-dimensional murine and patient-derived organoids treated with two inhibitors of the EZH2 plus IFNγ showed that EZH2 inhibition leads to expression of both MHC class I and II (MHCI/II) expression at both the mRNA and protein levels. Chromatin immunoprecipitation sequencing confirmed loss of EZH2-mediated histone marks and gain of activating histone marks at key loci. Furthermore, we demonstrate strong tumor control in models of both autochthonous and syngeneic LSCC treated with anti-PD1 immunotherapy with EZH2 inhibition. Single-cell RNA sequencing and immune cell profiling demonstrated phenotypic changes toward more tumor suppressive phenotypes in EZH2 inhibitor-treated tumors. These results indicate that EZH2 inhibitors could increase ICI responses in patients undergoing treatment for LSCC. SIGNIFICANCE: The data described here show that inhibition of the epigenetic enzyme EZH2 allows derepression of multiple immunogenicity factors in LSCC, and that EZH2 inhibition alters myeloid cells in vivo. These data support clinical translation of this combination therapy for treatment of this deadly tumor type.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Mice , Animals , Carcinoma, Squamous Cell/drug therapy , Cell Line , Enzyme Inhibitors , Lung Neoplasms/drug therapy , Lung/pathology , Tumor Microenvironment , Enhancer of Zeste Homolog 2 Protein/genetics
10.
J Cachexia Sarcopenia Muscle ; 15(1): 149-158, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38123146

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is highly associated with cachexia and weight loss, which is driven by the tumour's effect on the body. Data are lacking on differences in these metrics based on PDAC anatomic location. We hypothesize that the primary tumour's anatomic region influences the prevalence and severity of unintentional weight loss. METHODS: Treatment naïve patients with PDAC who underwent pancreatectomy at a single institution between 2012 and 2020 were identified retrospectively. Patients with pancreatic head or distal tumours were matched by sex, age, N and T stage. Serologic and anthropometric variables were obtained at the time of diagnosis. Skeletal muscle index (SMI), muscle radiation attenuation (MRA) and adiposity were measured. The primary outcome was presence of significant weight loss [>5% body weight (BW) loss in past 6 months]. Signed rank tests, Cochran Mantel Haenszel tests and Kaplan-Meier survival analysis are presented. RNA-seq of tumours was performed to explore enriched pathways related to cachexia and weight loss. RESULTS: Pancreatic head tumours (n = 24) were associated with higher prevalence (70.8% vs. 41.7%, P = 0.081) and degree of weight loss (7.9% vs. 2.5%, P = 0.014) compared to distal tumours (n = 24). BMI (P = 0.642), SMI (P = 0.738) and MRA (P = 0.478) were similar between groups. Combining BW loss, SMI and MRA into a composite score, patients with pancreatic head cancers met more criteria associated with poor prognosis (P = 0.142). Serum albumin (3.9 vs. 4.4 g/dL, P = 0.002) was lower and bilirubin (4.5 vs. 0.4 mg/dL, P < 0.001) were higher with pancreatic head tumours. Survival differed by tumour location (P = 0.014) with numerically higher median overall survival with distal tumours (11.1 vs. 21.8 months; P = 0.066). Transcriptomic analysis revealed inactivation of appetite stimulation, weight regulation and nutrient digestion/metabolism pathways in pancreatic head tumours. CONCLUSIONS: Resectable pancreatic head PDAC is associated with higher prevalence of significant weight loss and more poor prognosis features. Pancreaticobiliary obstruction and hypoalbuminemia in patients with head tumours suggests compounding effects of nutrient malabsorption and systemic inflammation on molecular drivers of cachexia, possibly contributing to shorter survival. Therefore, PDAC-associated cachexia is a heterogenous syndrome, which may be influenced by the primary tumour location. Select patients with resectable pancreatic head tumours may benefit from nutritional rehabilitation to improve outcomes.


Subject(s)
Carcinoma, Pancreatic Ductal , Head and Neck Neoplasms , Pancreatic Neoplasms , Humans , Cachexia/genetics , Cachexia/complications , Retrospective Studies , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Gene Expression Profiling , Head and Neck Neoplasms/complications
11.
bioRxiv ; 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37333199

ABSTRACT

Two important factors that contribute to resistance to immune checkpoint inhibitors (ICIs) are an immune-suppressive microenvironment and limited antigen presentation by tumor cells. In this study, we examine if inhibition of the methyltransferase EZH2 can increase ICI response in lung squamous cell carcinomas (LSCCs). Our in vitro experiments using 2D human cancer cell lines as well as 3D murine and patient derived organoids treated with two inhibitors of the EZH2 plus interferon-γ (IFNγ) showed that EZH2 inhibition leads to expression of both major histocompatibility complex class I and II (MHCI/II) expression at both the mRNA and protein levels. ChIP-sequencing confirmed loss of EZH2-mediated histone marks and gain of activating histone marks at key loci. Further, we demonstrate strong tumor control in models of both autochthonous and syngeneic LSCC treated with anti-PD1 immunotherapy with EZH2 inhibition. Single-cell RNA sequencing and immune cell profiling demonstrated phenotypic changes towards more tumor suppressive phenotypes in EZH2 inhibitor treated tumors. These results indicate that this therapeutic modality could increase ICI responses in patients undergoing treatment for LSCC.

12.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066210

ABSTRACT

The neurobiological origins of social behaviors are incompletely understood. Here we utilized synthetic biology approaches to reprogram the function of ZFP189, a transcription factor whose expression and function in the rodent prefrontal cortex was previously determined to be protective against stress-induced social deficits. We created novel synthetic ZFP189 transcription factors including ZFP189VPR, which activates the transcription of target genes and therefore exerts opposite functional control from the endogenous, transcriptionally repressive ZFP189WT. Upon viral delivery of these synthetic ZFP189 transcription factors to mouse prefrontal cortex, we observe that ZFP189-mediated transcriptional control promotes mature dendritic spine morphology on transduced pyramidal neurons. Interestingly, dysregulation of ZFP189-mediated transcription in this brain area, achieved by delivery of synthetic ZFP189VPR, precipitates social behavioral deficits in terms of social interaction, motivation, and the cognition necessary for the maintenance of social hierarchy, without other observable behavioral deficits. By performing RNA sequencing in virally manipulated prefrontal cortex tissues, we discover that ZFP189 transcription factors of opposing regulatory function have opposite influence on the expression of genetic transposable elements as well as genes that participate in immune functions. Collectively, this work reveals that ZFP189 function in the prefrontal cortex coordinates structural and transcriptional neuroadaptations necessary for social behaviors by binding transposable element-rich regions of DNA to regulate immune-related genes. Given the evidence for a co-evolution of social behavior and the brain immune response, we posit that ZFP189 may have evolved to augment brain transposon-associated immune function as a way of enhancing an animal's capacity for functioning in social groups.

13.
Stem Cell Reports ; 18(1): 289-304, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36525966

ABSTRACT

Aberrant lung cell differentiation is a hallmark of many lung diseases including chronic obstructive pulmonary disease (COPD). The EZH2-containing Polycomb Repressive Complex 2 (PRC2) regulates embryonic lung stem cell fate, but its role in adult lung is obscure. Histological analysis of patient tissues revealed that loss of PRC2 activity was correlated with aberrant bronchiolar cell differentiation in COPD lung. Histological and single-cell RNA-sequencing analyses showed that loss of EZH2 in mouse lung organoids led to lowered self-renewal capability, increased squamous morphological development, and marked shifts in progenitor cell populations. Evaluation of in vivo models revealed that heterozygosity of Ezh2 in mice with ovalbumin-induced lung inflammation led to epithelial cell differentiation patterns similar to those in COPD lung. We also identified cystathionine-ß-synthase as a possible upstream factor for PRC2 destabilization. Our findings suggest that PRC2 is integral to facilitating proper lung stem cell differentiation in humans and mice.


Subject(s)
Polycomb Repressive Complex 2 , Pulmonary Disease, Chronic Obstructive , Humans , Mice , Animals , Polycomb Repressive Complex 2/genetics , Cell Differentiation/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Embryonic Stem Cells , Pulmonary Disease, Chronic Obstructive/genetics , Polycomb Repressive Complex 1
14.
Hepatology ; 78(6): 1727-1741, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-36120720

ABSTRACT

BACKGROUND AND AIMS: The oncogene Melanoma differentiation associated gene-9/syndecan binding protein (MDA-9/SDCBP) is overexpressed in many cancers, promoting aggressive, metastatic disease. However, the role of MDA-9 in regulating hepatocellular carcinoma (HCC) has not been well studied. APPROACH AND RESULTS: To unravel the function of MDA-9 in HCC, we generated and characterized a transgenic mouse with hepatocyte-specific overexpression of MDA-9 (Alb/MDA-9). Compared with wild-type (WT) littermates, Alb/MDA-9 mice demonstrated significantly higher incidence of N-nitrosodiethylamine/phenobarbital-induced HCC, with marked activation and infiltration of macrophages. RNA sequencing (RNA-seq) in naive WT and Alb/MDA-9 hepatocytes identified activation of signaling pathways associated with invasion, angiogenesis, and inflammation, especially NF-κB and integrin-linked kinase signaling pathways. In nonparenchymal cells purified from naive livers, single-cell RNA-seq showed activation of Kupffer cells and macrophages in Alb/MDA-9 mice versus WT mice. A robust increase in the expression of Secreted phosphoprotein 1 (Spp1/osteopontin) was observed upon overexpression of MDA-9. Inhibition of NF-κB pathway blocked MDA-9-induced Spp1 induction, and knock down of Spp1 resulted in inhibition of MDA-9-induced macrophage migration, as well as angiogenesis. CONCLUSIONS: Alb/MDA-9 is a mouse model with MDA-9 overexpression in any tissue type. Our findings unravel an HCC-promoting role of MDA-9 mediated by NF-κB and Spp1 and support the rationale of using MDA-9 inhibitors as a potential treatment for aggressive HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Melanoma , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , NF-kappa B/metabolism , Syntenins/genetics , Syntenins/metabolism , Mice, Transgenic , Cell Line, Tumor
15.
Article in English | MEDLINE | ID: mdl-34336373

ABSTRACT

Heart rate variability (HRV) analysis has been serving as a significant promising marker in clinical research over the last few decades. The rapidly growing heart rate data generated from various devices, particularly the electrocardiograph (ECG), need to be stored properly and processed timely. There is a pressing need to develop efficient approaches for performing HRV analyses based on ECG signals. In this paper, we introduce a cloud computing approach (called HRV-Spark) to compute HRV measures in parallel by leveraging Apache Spark and a QRS detection algorithm in [1]. We ran HRV-Spark on Amazon Web Services (AWS) clusters using large-scale datasets in the National Sleep Research Resource. We evaluated the performance and scalability of HRV-Spark in terms of the number of computing nodes in the AWS cluster, the size of the input datasets, and the hardware configuration of the computing nodes. The results show that HRV-Spark is an efficient and scalable approach for computing HRV measures.

16.
AMIA Annu Symp Proc ; 2018: 1186-1195, 2018.
Article in English | MEDLINE | ID: mdl-30815161

ABSTRACT

Non-Lattice Subgraphs (NLSs) are graph fragments of a terminology which violates the lattice property, a desirable property for a well-formed terminology. They have been proven to be useful in identifying inconsistencies in biomed-ical terminologies. Similar NLSs may denote similar inconsistencies that may suggest possibly similar remediations. Therefore, we investigate a structural-semantic-based approach to identify similar NLSs in the Gene Ontology (GO). For an input NLS, we first obtain all its isomorphic NLSs. Then, we compare each concept of the input NLS with the corresponding concept in an isomorphic NLS and then compute a similarity score for the two NLSs. Applying this approach to 10 different structures of NLSs in GO, we found that 38.43% (910/2368) of NLSs have at least one similar NLS. We also observed some interesting lexical patterns frequently existing in similar NLSs. Our approach may be applicable to other biomedical terminologies for identifying similar NLSs.


Subject(s)
Gene Ontology , Semantics
SELECTION OF CITATIONS
SEARCH DETAIL
...