Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Zool Res ; 44(6): 1052-1063, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37872006

ABSTRACT

Widespread species that inhabit diverse environments possess large population sizes and exhibit a high capacity for environmental adaptation, thus enabling range expansion. In contrast, narrow-range species are confined to restricted geographical areas and are ecologically adapted to narrow environmental conditions, thus limiting their ability to expand into novel environments. However, the genomic mechanisms underlying the differentiation between closely related species with varying distribution ranges remain poorly understood. The Niviventer niviventer species complex (NNSC), consisting of highly abundant wild rats in Southeast Asia and China, offers an excellent opportunity to investigate these questions due to the presence of both widespread and narrow-range species that are phylogenetically closely related. In the present study, we combined ecological niche modeling with phylogenetic analysis, which suggested that sister species cannot be both widespread and dominant within the same geographical region. Moreover, by assessing heterozygosity, linkage disequilibrium decay, and Tajima's D analysis, we found that widespread species exhibited higher genetic diversity than narrow-range species. In addition, by exploring the "genomic islands of speciation", we identified 13 genes in highly divergent regions that were shared by the two widespread species, distinguishing them from their narrow-range counterparts. Functional annotation analysis indicated that these genes are involved in nervous system development and regulation. The adaptive evolution of these genes likely played an important role in the speciation of these widespread species.


Subject(s)
Environment , Murinae , Rats , Animals , Phylogeny , Murinae/genetics , China , Genomics
2.
Mol Ecol ; 14(6): 1767-81, 2005 May.
Article in English | MEDLINE | ID: mdl-15836648

ABSTRACT

Most phylogeographical studies of postglacial colonization focus on high latitude locations in the Northern Hemisphere. Here, we studied the phylogeographical structure of the red-necked snow finch Pyrgilauda ruficollis, an endemic species of the Tibetan plateau. We analysed 879 base pairs (bp) of the mitochondrial cytochrome b gene and 529 bp of the control region in 41 birds from four regional groups separated by mountain ranges. We detected 34 haplotypes, 31 of which occurred in a single individual and only three of which were shared among sampling sites within regional groups or among regional groups. Haplotype diversity was high (h = 0.94); nucleotide diversity was low (eth = 0.00415) and genetic differentiation was virtually non-existent. Analyses of mismatch distributions and geographically nested clades yielded results consistent with contiguous range expansion, and the expansion times were estimated as 0.07-0.19 million years ago (Ma). Our results suggest that P. ruficollis colonized the Tibetan plateau after the extensive glacial period (0.5-0.175 Ma), expanding from the eastern margin towards the inner plateau. Thus, in contrast to many of the post-glacial phylogeographical structures known at high latitudes, this colonization occurred without matrilineal population structuring. This might be due to the short glacial cycles typical of the Tibetan plateau, adaptation of P. ruficollis to cold conditions, or refugia and colonized habitat being semicontinuous and thus promoting population mixing.


Subject(s)
Demography , Finches/genetics , Genetic Variation , Genetics, Population , Phylogeny , Animals , Base Sequence , DNA Primers , DNA, Mitochondrial/genetics , Evolution, Molecular , Finches/physiology , Geography , Haplotypes/genetics , Likelihood Functions , Markov Chains , Molecular Sequence Data , Monte Carlo Method , Population Dynamics , Sequence Analysis, DNA , Tibet
SELECTION OF CITATIONS
SEARCH DETAIL
...