Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Biochem Biophys Rep ; 38: 101722, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38711549

ABSTRACT

Background: The tumor microenvironment (TME) plays an important role in cancer development; however, its implications in lung squamous cell carcinoma (LUSC) and pan-cancer have been poorly understood. Methods: In this study, The Cancer Genome Atlas (TCGA) and Estimation of Stromal and Immune cells in Malignant Tumor tissue using Expression Data (ESTIMATE) datasets were applied to identify differentially expressed genes. Additionally, online public databases were utilized for in-depth bioinformatics analysis of pan-cancer datasets to investigate the prognostic implications of TME-related genes further. Results: Our study demonstrated a significant association between stromal scores, immune scores, and specific clinical characteristics in LUSC patients. C3AR1, CSF1R, CCL2, CCR1, and CD14 were identified as prognostic genes related to the TME. All TME-related prognostic genes demonstrated varying degrees of correlation with immune infiltration subtypes and tumor cell stemness. Moreover, our study revealed that TME-related prognostic genes, particularly C3AR1 and CCR1, might contribute to drug resistance in cancer cells. Conclusions: The identified TME-related prognostic genes, particularly C3AR1 and CCR1, have potential implications for understanding and targeting drug resistance mechanisms in cancer cells.

2.
J Ethnopharmacol ; 319(Pt 3): 117357, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37898439

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) is considered a valuable asset in China's medical tradition. YPF is a classic prescription that has been derived from the "Jiu Yuan Fang" formula and consists of three herbs: Huangqi (Astragalus membranaceus Bunge), Baizhu (Atractylodes rubra Dekker), and Fangfeng (Saposhnikovia divaricata (Turcz.) Schischk). This prescription is widely acclaimed for its exceptional pharmacological properties, including potent antioxidant effects, hormone regulation, and immune modulation effects. AIM OF THE STUDY: Previous research provides evidence suggesting that YPF may have therapeutic effects on pulmonary fibrosis. Further exploration is essential to confirm its effectiveness and elucidate the fundamental processes. MATERIALS AND METHODS: First, the active components and target genes of YPF were extracted from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Next, the GSE53845 dataset, which contains information on pulmonary fibrosis, was downloaded from the GEO database. Network informatics methods was then be utilized to identify target genes associated with pulmonary fibrosis. A YPF-based network of protein-protein interactions was constructed to pinpoint possible target genes for pulmonary fibrosis treatment. Additionally, an in vitro model of pulmonary fibrosis induced by bleomycin (BLM) was established to further investigate and validate the possible mechanisms underlying the effectiveness of YPF. RESULTS: In this study, a total of 24 active ingredients of YPF, along with 178 target genes associated with the treatment, were identified. Additionally, 615 target genes related to pulmonary fibrosis were identified. Functional enrichment analysis revealed that 18 candidate genes (CGs) exhibited significant responses to tumor necrosis factor, NF-kB survival signaling, and positive regulation of apoptosis processes. Among these CGs, CAV1, VCAM1, and TP63 were identified as key target genes. Furthermore, cell experiments confirmed that the expression of CAV1 protein and RNA expression was increased in pulmonary fibrosis, but significantly decreased after treatment with YPF. Additionally, the expression of pSmad2, α-SMA, TGF-ß1, and TNF-α was also decreased following YPF treatment. CONCLUSIONS: Network pharmacology analysis revealed that YPF exhibits significant potential as a therapeutic intervention for pulmonary fibrosis by targeting various compounds and pathways. This study emphasizes that the efficacy of YPF in treating pulmonary fibrosis may be attributed to its ability to up-regulate CAV1 expression and inhibiting pulmonary fibrosis via modulation of the TGF-ß1/Smad2 signaling pathway. These findings underscore the promising role of YPF and its ability to potentially alleviate pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Caveolin 1
3.
Int J Med Sci ; 20(11): 1427-1447, 2023.
Article in English | MEDLINE | ID: mdl-37790851

ABSTRACT

Background: Metabolic reprogramming plays an important role in tumor progression and antitumor immunity. START domain-containing proteins (STARDs) are responsible for lipid metabolism. However, the underlying functions of STARDs in lung adenocarcinoma (LUAD) have not been clarified yet. Methods: Oncomine, UALCAN, TCGA and CPTAC were used to explore the expression landscape and clinicopathological characteristics of STARDs in LUAD. Diagnostic and prognostic values were assessed by Kaplan-Meier Plotter, Cox regression analysis, and ROC curve. GeneMANIA, GO, KEGG and GSEA were applied for exploring the potential biological functions. Epigenetic process, including mutation and m6A modification were analyzed by cBioPortal and TCGA. TIMER, TISIDB and TCGA cohort provided an immune signature. The correlation between STARDs expression and ferroptosis was analyzed by TCGA. Finally, the STARDs expression were confirmed by RT-qPCR and western blot. Results: STARD5/10/14 were overexpressed in LUAD compared with normal, while STARD4/7/8/11/12/13 were relatively low. STARD5/12/14 levels were positively related to clinical and lymph node stage. Survival analysis showed high STARD12 expression was associated with favorable overall survival, disease special survival as well as disease free survival, while STARD14 showed the opposite. GSEA analysis found STARD12 and STARD14 were associated with glycolysis, oxidative phosphorylation and tumor related signaling pathways. STARD12 co-expressed genes participated in cell cycle and DNA replication, and STARD14 were enriched in ECM-receptor interaction. Both STARD12 and STARD14 were corelated with epigenetic regulation, especially TP53 mutation and m6A modification. STARD12 expression was positively correlated with TMB level. The level of STARD12 was significantly associated with the abundance of infiltrating immune cells, including B cells, CD8+T cells, macrophages, dendritic cells, and chemokine, receptor, MHC, immunostimulatory related genes. STARD14 was negatively associated with the infiltration of CD8+T cells, while positively with CCL28 and immune checkpoints, including CTLA4 as well as PD-L2. In addition, STARD12/14 could regulate the ferroptosis related genes. Conclusion: STARD12 and STARD14 were expected to be potential biomarkers for LUAD, which were associated with epigenetic regulation, immune infiltration and ferroptosis.


Subject(s)
Adenocarcinoma of Lung , Ferroptosis , Lung Neoplasms , Humans , Epigenesis, Genetic , Ferroptosis/genetics , Prognosis , Adenocarcinoma of Lung/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics
4.
Ann Transl Med ; 11(10): 365, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37675291

ABSTRACT

Background: Pulmonary sclerosing pneumocytoma (PSP) is a rare benign lung tumor which generally presents as a solitary pulmonary nodule in middle-aged females. However, the PSP in some patients exhibits potentially malignant biological behavior, with recurrence and lymphatic or distant metastasis being observed. Case Description: We encountered a case of a 46-year-old female with an inordinately massive tumor 9.5 cm in diameter and a relatively high Ki-67 proliferation rate. Fine needle aspiration (FNA) played a significant but limited role in the preoperative diagnosis: the computed tomography (CT)-guided lung puncture biopsy was consistent with the typical pathology of PSP; however, endobronchial ultrasound-guided transbronchial lung biopsy (EBUS-TBLB) could not provide a definitive diagnosis. The patient ultimately underwent thoracoscopic resection and mediastinal lymph node dissection. Here, we provide a review of the literature on patients with PSP with malignant biological behavior to raise awareness of the malignant potential of PSP and describe our experience to inform future management. Conclusions: PSP lacks specificity in its clinical and radiological characteristics and has complex pathological manifestations. FNA is valuable in the diagnosis and differential diagnosis of PSP but involves the risk of misdiagnosis or missed diagnosis. Additionally, we believe that the accepted benign features of PSP need to be updated and that the potential malignant features of PSP should be carefully monitored. Surgical resection is curative but strict follow-up is crucial.

5.
J Cancer ; 14(8): 1427-1442, 2023.
Article in English | MEDLINE | ID: mdl-37283800

ABSTRACT

Autophagy plays an important role in non-small cell lung cancer (NSCLC). We aimed to establish novel autophagy-related tumor subtypes to distinguish the prognosis of NSCLC. In this study, gene expression profiles, mutation data and clinical information obtained from the Cancer Genome Atlas. Kaplan Meier-plotter could evaluate prognostic value of autophagy-related genes. Consensus clustering revealed autophagy-related tumor subtypes. Gene expression profiles, mutation data and immune infiltration signatures were identified, oncogenic pathways and gene-drug interactions were performed according to the clusters. Finally, a total of 23 prognostic genes were screened and consensus clustering analysis divided the NSCLC into 2 clusters. The mutation signature showed that 6 genes are special. Immune infiltration signatures showed that higher fraction of immune cells was associated with cluster 1. The oncogenic pathways and gene-drug interactions also showed different patterns. In conclusion, autophagy-related tumor subtypes have different prognosis. Understanding the subtypes of NSCLC are helpful to accurately identify the NSCLC and personalized treatment.

6.
Int J Gen Med ; 16: 1713-1733, 2023.
Article in English | MEDLINE | ID: mdl-37187591

ABSTRACT

Purpose: Non-small cell lung cancer (NSCLC) is currently a problem in the clinic and in society. Tumor-related macrophages (TAMs) in the tumor microenvironment (TME) play a vital role in the development of NSCLC. Patients and Methods: Bioinformatics was used to analyze the role of Indoleamine 2,3-dioxygenase 1 (IDO1) in NSCLC and the correlation of its expression with CD163 expression. The expression of CD163 and IDO1 was measured by immunohistochemistry, and their colocalization was assessed by immunofluorescence. M2 macrophage polarization was induced, and a coculture model of NSCLC cells and macrophages was established. Results: Bioinformatics analysis showed that IDO1 promoted the metastasis and differentiation of NSCLC and inhibited DNA repair. Moreover, the expression of IDO1 was positively correlated with CD163 expression. We discovered that IDO1 expression was related to M2 macrophage differentiation. In vitro, we showed that increased IDO1 expression promoted the invasion, proliferation, and metastasis of NSCLC cells. Conclusion: In conclusion, we determined that IDO1 can regulate the M2 polarization of TAMs and promote the progression of NSCLC, which provides partial theoretical evidence for the use of IDO1 inhibitors in the treatment of NSCLC.

7.
Ther Adv Respir Dis ; 16: 17534666221140972, 2022.
Article in English | MEDLINE | ID: mdl-36468453

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is an interstitial pulmonary disease with an extremely poor prognosis. Autophagy is a fundamental intracellular process involved in maintaining cellular homeostasis and regulating cell survival. Autophagy deficiency has been shown to play an important role in the progression of pulmonary fibrosis. This review focused on the six steps of autophagy, as well as the interplay between autophagy and other seven pulmonary fibrosis related mechanisms, which include extracellular matrix deposition, myofibroblast differentiation, epithelial-mesenchymal transition, pulmonary epithelial cell dysfunction, apoptosis, TGF-ß1 pathway, and the renin-angiotensin system. In addition, this review also summarized autophagy-related signaling pathways such as mTOR, MAPK, JAK2/STAT3 signaling, p65, and Keap1/Nrf2 signaling during the development of IPF. Furthermore, this review also illustrated the commonly used autophagy detection methods, the currently approved antifibrotic drugs pirfenidone and nintedanib, and several prospective compounds targeting autophagy for the treatment of IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Kelch-Like ECH-Associated Protein 1 , Prospective Studies , NF-E2-Related Factor 2 , Autophagy
8.
Front Genet ; 13: 937069, 2022.
Article in English | MEDLINE | ID: mdl-36160018

ABSTRACT

Background: Forkhead box P (FOXP) family was introduced as a double-edged sword in tumorigenesis and influenced immunotherapy response by modulating host immunity. This study aimed to summarize the involvement of the FOXP family in non-small cell lung cancer (NSCLC). Methods: The UALCAN, Gene Expression Profiling Interactive Analysis (GEPIA), and Reverse transcription-quantitative polymerase chain reaction (RT‒qPCR) were used to analyse the expression levels of the FOXP family in NSCLC. The prognostic impact was evaluated using Kaplan-Meier Plotter. MethSurv, UALCAN, and cBioPortal were applied to analyse the DNA methylation and mutation status of the FOXP family respectively. COEXPEDIA, STRING, and GeneMANIA were used to explore the interaction mechanism. Finally, TISIDB was used to investigate all of the immune-related characteristics regulated by the FOXP family. Results: The expression levels of FOXP1/3/4 were dysregulated in NSCLC tissues than that in normal tissues. Groups with low expression levels of FOXP1/4 and high expression levels of FOXP2/3 were associated with poor prognosis in NSCLC. The transcriptional levels of FOXP2/3/4 were correlated with DNA methylation in NSCLC. FOXP1/3/4 DNA methylation were correlated with prognosis. Pathway enrichment analysis indicated the FOXP family was mainly related to immune-related pathways. After DNA methylation, the correlations between FOXP family and immune factors were opposite to that before alteration in NSCLC. Conclusion: This study elucidated FOXP family could serve as vital diagnostic and prognostic biomarkers in NSCLC. Our study highlighted novel potential functions of FOXP family DNA methylation in regulation of immune-related signatures in NSCLC.

9.
Int J Chron Obstruct Pulmon Dis ; 17: 1811-1825, 2022.
Article in English | MEDLINE | ID: mdl-35975032

ABSTRACT

Purpose: Cellular senescence participates in the occurrence and development of chronic obstructive pulmonary disease (COPD). This study aimed to identify senescence-related hub genes and explore effective diagnostic markers and therapeutic targets for COPD. Methods: The microarray data from the GSE38974 dataset was downloaded from the Gene Expression Omnibus (GEO) database. The overlapping genes between genes from the GSE38974 dataset and CellAge database were considered differentially expressed senescence-related genes (DESRGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using R software. Protein-protein interaction (PPI), miRNA-mRNA network, and competitive endogenous RNA (ceRNA) network were constructed and visualized by Cytoscape software. GSE100281 and GSE103174 datasets were employed to validate the expression and diagnostic value of hub genes. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to measure the mRNA levels of hub genes in peripheral blood mononuclear cells (PBMCs) from COPD and control samples. Results: A total of 23 DESRGs were identified between COPD samples and healthy controls. Enrichment analysis revealed that DESRGs were mainly related to apoptosis and senescence. Moreover, four hub genes and two key clusters were acquired by Cytohubba and MCODE plugin, respectively. CDKN1A and HDAC1 were verified as final hub genes based on GSE100281 and GSE103174 datasets validation. The mRNA expression level of CDKN1A was negatively related to forced expiratory volume in 1 second/forced vital capacity (FEV1/FVC), and HDAC1 expression had the opposite correlation. Finally, an HDAC1-based ceRNA network, including 6 miRNAs and 11 lncRNAs, was constructed. Conclusion: We identified two senescence-related hub genes, CDKN1A and HDAC1, which may be effective biomarkers for COPD diagnosis and treatment. An HDAC1-related ceRNA network was constructed to clarify the role of senescence in COPD pathogenesis.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21 , Histone Deacetylase 1 , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Computational Biology , Cyclin-Dependent Kinase Inhibitor p21/genetics , Gene Expression Profiling , Gene Regulatory Networks , Histone Deacetylase 1/genetics , Humans , Leukocytes, Mononuclear/metabolism , MicroRNAs/genetics , Protein Interaction Maps , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , RNA, Messenger/genetics
10.
J Transl Med ; 20(1): 260, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672776

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is a heavy social burden worldwide. Because the mechanisms involved in LUAD remain unclear, the prognosis of LUAD remains poor. Consequently, it is urgent to investigate the potential mechanisms of LUAD. Junctional adhesion molecule-like protein (JAML), is recognized as a tumorigenesis molecule in gastric cancer. However, the role of JAML in LUAD is still unclear. Here we aimed to evaluate the role of JAML in LUAD. METHODS: qRT-PCR, Western blotting and immunohistochemistry were conducted to investigate the expression of JAML in LUAD tissues. JAML was knocked down and overexpressed in LUAD cells using transient transfection by siRNA and plasmids or stable transfection by lentivirus. Proliferation potential of LUAD cells were detected by Cell Counting Kit-8, EdU incorporation and Colony formation assay. Migration and invasion abilities of LUAD cells were determined by wound healing, transwell migration and invasion assays. Cell cycle and cell apoptosis were detected by flow cytometry. The effects of JAML in vivo were studied in xenograft tumor models. Western blotting was used to explore the molecular mechanisms of JAML function. In addition, rescue experiments were performed to verify the possible mechanisms. RESULTS: JAML expression was elevated in LUAD tissues compared with peritumor tissues, and this upregulation was positively related to pT and pTNM. Furthermore, both in vitro and in vivo, JAML silencing markedly repressed malignant behaviors of LUAD cells and vice versa. Knockdown of JAML also mediated cell cycle arrest at G0/G1 phase and promoted apoptosis in LUAD cells. Mechanistically, silencing JAML repressed the process of epithelial-mesenchymal transition by inactivating the Wnt/ß-catenin pathway in LUAD cells. Effects of JAML can be rescued by Wnt/ß-catenin pathway activator in A549 cells. CONCLUSIONS: Our data reveal the oncogenic role of JAML in LUAD, indicating that JAML may be a predictive biomarker and novel therapeutic target for LUAD.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Cell Adhesion Molecules/metabolism , Lung Neoplasms , Adenocarcinoma/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Junctional Adhesion Molecules/genetics , Junctional Adhesion Molecules/metabolism , Lung Neoplasms/pathology , Wnt Signaling Pathway , beta Catenin/metabolism
11.
Int J Chron Obstruct Pulmon Dis ; 17: 1219-1236, 2022.
Article in English | MEDLINE | ID: mdl-35637927

ABSTRACT

Purpose: Ferroptosis and immune infiltration are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). We aim to identify ferroptosis-related hub genes and analyze their association with immune infiltration in COPD through bioinformatics methods. Materials and Methods: The mRNA microarray data of GSE38974 were downloaded from Gene Expression Omnibus to obtain differentially expressed genes (DEGs). The DEGs were intersected with ferroptosis-related genes (FRGs) from FerrDb to obtain differentially expressed FRGs. GO and KEGG enrichment and protein-protein interaction (PPI) analyses of differentially expressed FRGs were conducted in R software and STRING database. The key module and hub genes were screened by Cytoscape software. MiRNAs, transcription factors and signal molecules were predicted in miRNet and NetworkAnalyst. The disease correlation in the Comparative Toxicomics Database (CTD) and the receiver operating characteristic (ROC) curves of hub genes were analyzed. Immune infiltration was evaluated by CIBERSORT algorithm. Spearman correlation analyses were conducted between hub genes and differentially infiltrated immune cells. Results: Fifteen differentially expressed FRGs were identified, which were enriched in some terms involving airway inflammatory responses and structural remodeling. Five hub genes were selected including HIF1A, IL6, PTGS2, CDKN1A and ATM. Inference scores in CTD indicated their association with COPD. Two miRNAs, five transcription factors and one signal molecule were predicted. The combination of hub genes could be a fine diagnostic indicator of COPD (AUC: 0.981, CI: 0.940-1.000). Immune infiltration evaluation showed that monocytes and M0 macrophages were upregulated in COPD lung tissues, while CD8 T cells, activated NK cells, M2 macrophages, resting dendritic cells and resting mast cells were downregulated. The hub genes were significantly associated with differentially infiltrated immune cells. Conclusion: We identified five ferroptosis-related hub genes (HIF1A, IL6, PTGS2, CDKN1A and ATM) in COPD, and found that they may influence the pathogenesis of COPD by regulating ferroptosis and thus affecting infiltrating immune cells.


Subject(s)
Ferroptosis , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Computational Biology/methods , Cyclooxygenase 2/genetics , Ferroptosis/genetics , Gene Regulatory Networks , Humans , Interleukin-6/genetics , MicroRNAs/genetics , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Transcription Factors/genetics
12.
Article in English | MEDLINE | ID: mdl-35431545

ABSTRACT

Purpose: Chronic obstructive pulmonary disease (COPD) is a predominant cause of mortality worldwide. Autophagy, which depends on a lysosomal degradation pathway, plays an essential role in the occurrence of COPD. The aim of our study was to identify the potential function of autophagy and construct a BCL2-related competing endogenous RNA (ceRNA) network that induces autophagy in COPD. Methods: Blood sample data from GSE31568, GSE24709, and GSE61741 were collected from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs in COPD and controls were identified via GEO2R. Transcription factors were obtained from FunRich. DIANA, miRDB, miRTarBase, and TargetScan were used to predict target genes of miRNAs. Autophagy genes were collected from the Human Autophagy Database (HADb). The GSE151052 dataset was used to identify autophagy-related differentially expressed genes in tissues. Functional enrichment and protein-protein interaction (PPI) network analyses were conducted via Metascape and the STRING network. Spearman correlation analysis was used to analyze the relationship between autophagy-related differentially expressed genes and lung function. The BCL2-related ceRNA network was modeled by Cytoscape. Results: We obtained 41 differentially expressed miRNAs and 10 significantly different transcription factors. We identified 19 autophagy-related differentially expressed genes that were significantly different (P<0.05) in tissue samples. The most significant enrichment in Metascape was an autophagy item, which further confirmed autophagy participation in the occurrence of COPD. PPI network analysis found four genes (BCL2, BECN1, MAPK8, and ITPR1), among which BCL2 was correlated with both FEV1/FVC and FEV1 prediction. Finally, the BCL2-related ceRNA network was constructed to clarify the interaction of RNAs and occurrence of autophagy, including 18 miRNAs and 65 lncRNAs. Conclusion: We identified 19 autophagy-related differentially expressed genes that participated in COPD; among them, BCL2 was correlated with lung function, and a BCL2-related ceRNA network was constructed, which further revealed the potential mechanism of autophagy involvement in COPD.


Subject(s)
MicroRNAs , Pulmonary Disease, Chronic Obstructive , RNA, Long Noncoding , Autophagy/genetics , Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , RNA, Long Noncoding/genetics , Transcription Factors/genetics
13.
Front Cell Dev Biol ; 10: 707405, 2022.
Article in English | MEDLINE | ID: mdl-35309906

ABSTRACT

Background: Genomic instability of N6-methyladenosine (m6A)-related long noncoding RNAs (lncRNAs) plays a pivotal role in the tumorigenesis of lung adenocarcinoma (LUAD). Our study identified a signature of genomic instability of m6A-associated lncRNA signature and revealed its prognostic role in LUAD. Methods: We downloaded RNA-sequencing data and somatic mutation data for LUAD from The Cancer Genome Atlas (TCGA) and the GSE102287 dataset from the Gene Expression Omnibus (GEO) database. The "Limma" R package was used to identify a network of regulatory m6A-related lncRNAs. We used the Wilcoxon test method to identify genomic-instability-derived m6A-related lncRNAs. A competing endogenous RNA (ceRNA) network was constructed to identify the mechanism of the genomic instability of m6A-related lncRNAs. Univariate and multivariate Cox regression analyses were performed to construct a prognostic model for internal testing and validation of the prognostic m6A-related lncRNAs using the GEO dataset. Performance analysis was conducted to compare our prognostic model with the previously published lncRNA models. The CIBERSORT algorithm was used to explore the relationship of m6A-related lncRNAs and the immune microenvironment. Prognostic m6A-related lncRNAs in prognosis, the tumor microenvironment, stemness scores, and anticancer drug sensitivity were analyzed to explore the role of prognostic m6A-related lncRNAs in LUAD. Results: A total of 42 genomic instability-derived m6A-related lncRNAs were differentially expressed between the GS (genomic stable) and GU (genomic unstable) groups of LUAD patients. Four differentially expressed lncRNAs, 17 differentially expressed microRNAs, and 75 differentially expressed mRNAs were involved in the genomic-instability-derived m6A-related lncRNA-mediated ceRNA network. A prediction model based on 17 prognostic m6A-associated lncRNAs was constructed based on three TCGA datasets (all, training, and testing) and validated in the GSE102287 dataset. Performance comparison analysis showed that our prediction model (area under the curve [AUC] = 0.746) could better predict the survival of LUAD patients than the previously published lncRNA models (AUC = 0.577, AUC = 0.681). Prognostic m6A-related-lncRNAs have pivotal roles in the tumor microenvironment, stemness scores, and anticancer drug sensitivity of LUAD. Conclusion: A signature of genomic instability of m6A-associated lncRNAs to predict the survival of LUAD patients was validated. The prognostic, immune microenvironment and anticancer drug sensitivity analysis shed new light on the potential novel therapeutic targets in LUAD.

14.
Front Cell Dev Biol ; 9: 756911, 2021.
Article in English | MEDLINE | ID: mdl-34869345

ABSTRACT

Background: Autophagy plays an important role in lung adenocarcinoma (LUAD). In this study, we aimed to explore the autophagy-related gene (ARG) expression pattern and to identify promising autophagy-related biomarkers to improve the prognosis of LUAD. Methods: The gene expression profiles and clinical information of LUAD patients were downloaded from the Cancer Genome Atlas (TCGA), and validation cohort information was extracted from the Gene Expression Omnibus database. The Human Autophagy Database (HADb) was used to extract ARGs. Gene expression data were analyzed using the limma package and visualized using the ggplot2 package as well as the pheatmap package in R software. Functional enrichment analysis was also performed for the differentially expressed ARGs (DEARGs). Then, consensus clustering revealed autophagy-related tumor subtypes, and differentially expressed genes (DEGs) were screened according to the subtypes. Next, the univariate Cox and multivariate Cox regression analyses were used to identify independent prognostic ARGs. After overlapping DEGs and the independent prognostic ARGs, the predictive risk model was established and validated. Correlation analyses between ARGs and clinicopathological variables were also explored. Finally, the TIMER and TISIDB databases were used to further explore the correlation analysis between immune cell infiltration levels and the risk score as well as clinicopathological variables in the predictive risk model. Results: A total of 222 genes from the HADb were identified as ARGs, and 28 of the 222 genes were pooled as DEARGs. The most significant GO term was autophagy (p = 3.05E-07), and KEGG analysis results indicated that 28 DEARGs were significantly enriched in the ErbB signaling pathway (p < 0.001). Then, consensus clustering analysis divided the LUAD into two clusters, and a total of 168 DEGs were identified according to cluster subtypes. Then univariate and multivariate Cox regression analyses were used to identify 12 genes that could serve as independent prognostic indicators. After overlapping 168 DEGs and 12 genes, 10 genes (ATG4A, BAK1, CAPNS1, CCR2, CTSD, EIF2AK3, ITGB1, MBTPS2, SPHK1, ST13) were selected for the further exploration of the prognostic pattern. Survival analysis results indicated that this risk model identified the prognosis (p = 4.379E-10). Combined with the correlation analysis results between ARGs and clinicopathological variables, five ARGs were screened as prognostic genes. Among them, SPHK1 expression levels were positively correlated with CD4+ T cells and dendritic cell infiltration levels. Conclusions: In this study, we constructed a predictive risk model and identified a five autophagy subtype-related gene expression pattern to improve the prognosis of LUAD. Understanding the subtypes of LUAD is helpful to accurately characterize the LUAD and develop personalized treatment.

15.
Biomed Res Int ; 2021: 6831770, 2021.
Article in English | MEDLINE | ID: mdl-34722769

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a fatal syndrome frequently induced by lipopolysaccharide (LPS) released from the bacterial cell wall. LPS could also trigger autophagy of lung bronchial epithelial cell to relieve the inflammation, while the overwhelming LPS would impair the balance of autophagy consequently inducing serious lung injury. METHODS: We observed the autophagy variation of 16HBE, human bronchial epithelial cell, under exposure to different concentrations of LPS through western blot, immunofluorescence staining, and electron microscopy. Eight strands of 16HBE were divided into two groups upon 1000 ng/ml LPS stimulation or not, which were sent to be sequenced at whole transcriptome. Subsequently, we analyzed the sequencing data in functional enrichment, pathway analysis, and candidate gene selection and constructed a hsa-miR-663b-related competing endogenous RNA (ceRNA) network. RESULTS: We set a series of concentrations of LPS to stimulate 16HBE and observed the variation of autophagy in related protein expression and autophagosome count. We found that the effective concentration of LPS was 1000 ng/ml at 12 hours of exposure and sequenced the 1000 ng/ml LPS-stimulated 16HBE. As a result, a total of 750 differentially expressed genes (DEGs), 449 differentially expressed lncRNAs (DElncRNAs), 76 differentially expressed circRNAs (DEcircRNAs), and 127 differentially expressed miRNAs (DEmiRNAs) were identified. We constructed the protein-protein interaction (PPI) network to visualize the interaction between DEGs and located 36 genes to comprehend the core discrepancy between LPS-stimulated 16HBE and the negative control group. In combined analysis of differentially expressed RNAs (DERNAs), we analyzed all the targeted relationships of ceRNA in DERNAs and figured hsa-miR-663b as a central mediator in the ceRNA network to play when LPS induced the variation of autophagy in 16HBE. CONCLUSION: Our research indicated that the hsa-miR-663b-related ceRNA network may contribute to the key regulatory mechanism in LPS-induced changes of autophagy and ALI.


Subject(s)
Acute Lung Injury/genetics , Autophagy/genetics , RNA, Circular/genetics , Acute Lung Injury/metabolism , Acute Lung Injury/physiopathology , Autophagy/drug effects , Autophagy/physiology , Biomarkers, Tumor/genetics , Cell Line , China , Computational Biology/methods , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Humans , Lipopolysaccharides/pharmacology , MicroRNAs/genetics , Prognosis , Protein Interaction Maps/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Transcriptome/genetics
16.
J Cancer ; 12(18): 5573-5582, 2021.
Article in English | MEDLINE | ID: mdl-34405018

ABSTRACT

The process of ubiquitination and deubiquitination is widely present in the human body's protein reactions and plays versatile roles in multiple diseases. Deubiquitinating enzymes (DUBs) are significant regulators of this process, which cleave the ubiquitin (Ub) moiety from various substrates and maintain protein stability. Lung adenocarcinoma (LUAD) is the most common type of non-small cell lung cancer (NSCLC) and remains refractory to treatment. To elucidate the mechanism of LUAD and advance new therapeutic targets, we review the latest research progress on DUBs in LUAD. We summarize the biological capabilities of these DUBs and further highlight those DUBs that may serve as anticancer target candidates for precision treatment. We also discuss deubiquitinase inhibitors, which are expected to play a role in targeted LUAD therapy.

17.
Front Cell Dev Biol ; 9: 682002, 2021.
Article in English | MEDLINE | ID: mdl-34409029

ABSTRACT

BACKGROUND: Tumor microenvironment (TME) plays important roles in different cancers. Our study aimed to identify molecules with significant prognostic values and construct a relevant Nomogram, immune model, competing endogenous RNA (ceRNA) in lung adenocarcinoma (LUAD). METHODS: "GEO2R," "limma" R packages were used to identify all differentially expressed mRNAs from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Genes with P-value <0.01, LogFC>2 or <-2 were included for further analyses. The function analysis of 250 overlapping mRNAs was shown by DAVID and Metascape software. By UALCAN, Oncomine and R packages, we explored the expression levels, survival analyses of CDK2 in 33 cancers. "Survival," "survminer," "rms" R packages were used to construct a Nomogram model of age, gender, stage, T, M, N. Univariate and multivariate Cox regression were used to establish prognosis-related immune forecast model in LUAD. CeRNA network was constructed by various online databases. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to explore correlations between CDK2 expression and IC50 of anti-tumor drugs. RESULTS: A total of 250 differentially expressed genes (DEGs) were identified to participate in many cancer-related pathways, such as activation of immune response, cell adhesion, migration, P13K-AKT signaling pathway. The target molecule CDK2 had prognostic value for the survival of patients in LUAD (P = 5.8e-15). Through Oncomine, TIMER, UALCAN, PrognoScan databases, the expression level of CDK2 in LUAD was higher than normal tissues. Pan-cancer analysis revealed that the expression, stage and survival of CDK2 in 33 cancers, which were statistically significant. Through TISIDB database, we selected 13 immunodepressants, 21 immunostimulants associated with CDK2 and explored 48 genes related to these 34 immunomodulators in cBioProtal database (P < 0.05). Gene Set Enrichment Analysis (GSEA) and Metascape indicated that 49 mRNAs were involved in PUJANA ATM PCC NETWORK (ES = 0.557, P = 0, FDR = 0), SIGNAL TRANSDUCTION (ES = -0.459, P = 0, FDR = 0), immune system process, cell proliferation. Forest map and Nomogram model showed the prognosis of patients with LUAD (Log-Rank = 1.399e-08, Concordance Index = 0.7). Cox regression showed that four mRNAs (SIT1, SNAI3, ASB2, and CDK2) were used to construct the forecast model to predict the prognosis of patients (P < 0.05). LUAD patients were divided into two different risk groups (low and high) had a statistical significance (P = 6.223e-04). By "survival ROC" R package, the total risk score of this prognostic model was AUC = 0.729 (SIT1 = 0.484, SNAI3 = 0.485, ASB2 = 0.267, CDK2 = 0.579). CytoHubba selected ceRNA mechanism medicated by potential biomarkers, 6 lncRNAs-7miRNAs-CDK2. The expression of CDK2 was associated with IC50 of 89 antitumor drugs, and we showed the top 20 drugs with P < 0.05. CONCLUSION: In conclusion, our study identified CDK2 related immune forecast model, Nomogram model, forest map, ceRNA network, IC50 of anti-tumor drugs, to predict the prognosis and guide targeted therapy for LUAD patients.

18.
Front Cell Dev Biol ; 9: 645482, 2021.
Article in English | MEDLINE | ID: mdl-34368114

ABSTRACT

Increasing studies have proved that malignant tumors are associated with energy metabolism. This study was aimed to explore biological variables that impact the prognosis of patients in the glycolysis-related subgroups of lung adenocarcinoma (LUAD). The mRNA expression profiling and mutation data in large LUAD samples were collected from the Cancer Genome Atlas (TCGA) database. Then, we identified the expression level and prognostic value of glycolysis-related genes, as well as the fractions of 22 immune cells in the tumor microenvironment. The differences between glycolysis activity, mutation, and immune infiltrates were discussed in these groups, respectively. Two hundred fifty-five glycolysis-related genes were identified from gene set enrichment analysis (GSEA), of which 43 genes had prognostic values (p < 0.05). Next, we constructed a glycolysis-related competing endogenous RNA (ceRNA) network which related to the survival of LUAD. Then, two subgroups of LUAD (clusters 1 and 2) were identified by applying unsupervised consensus clustering to 43 glycolysis-related genes. The survival analysis showed that the cluster 1 patients had a worse prognosis (p < 0.001), and upregulated differentially expressed genes (DEGs) are interestingly enriched in malignancy-related biological processes. The differences between the two subgroups are SPTA1, KEAP1, USH2A, and KRAS among top 10 mutated signatures, which may be the underlying mechanism of grouping. Combined high tumor mutational burden (TMB) with tumor subgroups preferably predicts the prognosis of LUAD patients. The CIBERSORT algorithm results revealed that low TMB samples were concerned with increased infiltration level of memory resting CD4+ T cell (p = 0.03), resting mast cells (p = 0.044), and neutrophils (p = 0.002) in cluster 1 and high TMB samples were concerned with increased infiltration level of memory B cells, plasma cells, CD4 memory-activated T cells, macrophages M1, and activated mast cells in cluster 2, while reduced infiltration of monocytes, resting dendritic cells, and resting mast cells was captured in cluster 2. In conclusion, significant different gene expression characteristics were pooled according to the two subgroups of LUAD. The combination of subgroups, TMB and tumor-infiltrating immune cell signature, might be a novel prognostic biomarker in LUAD.

19.
Front Mol Biosci ; 8: 644620, 2021.
Article in English | MEDLINE | ID: mdl-34150845

ABSTRACT

N6-methyladenosine RNA modification plays a significant role in the progression of multiple tumorigenesis. Our study identified the imperative role of m6A regulators in the tumor immune microenvironment, survival, stemness score, and anticancer drug sensitivity of pan-cancer. The Wilcox test was to identify the differential expression between 17 m6A regulators across 33 TCGA cancer types and their normal tissues from UCSC Xena GDC pan-cancer. Survival analysis of m6A-related regulators in 33 TCGA cancer types was identified using the "survival" and "survminer" package. The Spearman correlation test and Pearson correlation test were used to identify the correlation relationship between m6A regulators expression and tumor microenvironment, tumor stem cell score, and drug sensitivity of anticancer drugs. ConsensusPathDB was used for exploring m6A regulators functional enrichment. The 17 (METTL3, WTAP, METTL14, RBM15, RBM15B, VIRMA, HNRNPC, HNRNPA2B1, YTHDC1, ZC3H13, YTHDF1, YTHDC2, YTHDF2, IGF2BP3, IGF2BP1, FTO, and ALKBH5) m6A regulators were differentially expressed in 18 TCGA cancer types and adjacent normal tissues. Correlation analysis indicated that the relationship between the expression of 17 m6A regulators and tumor microenvironment indicated that the higher expression of m6A regulators, the higher the degree of tumor stem cells. The anticancer drug sensitivity analysis indicated that ZC3H13 expression had a positive relationship with anticancer drugs such as selumetinib, dabrafenib, cobimetinib, trametinib, and hypothemycin (p < 0.001). YTHDF2 expression was significantly negatively correlated with the anticancer drug dasatinib (p < 0.001). The pan-cancer immune subtype analysis showed that the 17 m6A regulators were significantly different in immune subtype C1 (wound healing), C3 (inflammatory), C2 (IFN-gamma dominant), C5 (immunological quiet), C4 (lymphocyte depleted), and C6 (TGF-beta dominant) (p < 0.001). Our study provides a comprehensive insight for revealing the significant role of m6A regulators in the tumor immune microenvironment, stemness score, and anticancer drug sensitivity of human cancers.

20.
Life Sci ; 269: 119090, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33465393

ABSTRACT

AIMS: Pyroptosis and inflammation are involved in the development of chronic obstructive pulmonary disease (COPD). However, the cigarette smoke-mediated mechanism of COPD remains unclear. In this study, we aimed to investigate the role of nucleotide-binding domain-like receptor protein-3 (NLRP3) inflammasome-mediated pyroptosis in the death of human bronchial epithelial (HBE) cells after cigarette smoke extract (CSE) exposure. MAIN METHODS: The protein level of NLRP3 in lung tissue was measured after cigarette smoke exposure in vivo. In vitro, HBE cells were treated with CSE. Subsequently, the activity of caspase-1, lactate dehydrogenase (LDH) release, release of interleukin (IL)-1ß and NLRP3 expression levels were measured. The involvement of reactive oxygen species (ROS) was also explored. KEY FINDINGS: After exposure to CSE, increased release of LDH, the transcriptional and translational upregulation of NLRP3, the caspase-1 activity levels, and enhanced IL-1ß and IL-18 release were observed in 16HBE cells. In addition, NLRP3 was required to activate the caspase-1. Our results suggested that pre-stimulated of 16HBE with a caspase-1 inhibitor, or using NLRP3 siRNA to silence NLRP3 expression, also caused the decrease of IL-1ß release and pyroptosis. SIGNIFICANCES: CSE induced inflammation and contributed to pyroptosis through the ROS/NLRP3/caspase-1 pathway in 16HBE cells. The NLRP3 inflammasome participates in CSE-induced HBE cell damage and pyroptosis, which could provide new insights into COPD.


Subject(s)
Bronchi/pathology , Caspase 1/metabolism , Epithelial Cells/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pyroptosis , Reactive Oxygen Species/metabolism , Smoke/adverse effects , Animals , Bronchi/drug effects , Bronchi/metabolism , Caspase 1/genetics , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Inflammasomes/drug effects , Inflammasomes/metabolism , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Oxidative Stress/drug effects , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , Signal Transduction , Nicotiana
SELECTION OF CITATIONS
SEARCH DETAIL
...