Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
BMC Plant Biol ; 24(1): 816, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39210264

ABSTRACT

BACKGROUND: Suaeda australis is one of typical halophyte owing to high levels of salt tolerance. In addition, the bZIP gene family assumes pivotal functions in response to salt stress. However, there are little reports available regarding the bZIP gene family in S. australis. RESULTS: In this study, we successfully screened 44 bZIP genes within S. australis genome. Subsequently, we conducted an extensive analysis, encompassing investigations into chromosome location, gene structure, phylogenetic relationship, promoter region, conserved motif, and gene expression profile. The 44 bZIP genes were categorized into 12 distinct groups, exhibiting an uneven distribution among the 9 chromosomes of S. australis chromosomes, but one member (Sau23745) was mapped on unanchored scaffolds. Examination of cis-regulatory elements revealed that bZIP promoters were closely related to anaerobic induction, transcription start, and light responsiveness. Comparative transcriptome analysis between ST1 and ST2 samples identified 2,434 DEGs, which were significantly enriched in some primary biological pathways related to salt response-regulating signaling based on GO and KEGG enrichment analysis. Expression patterns analyses clearly discovered the role of several differently expressed SabZIPs, including Sau08107, Sau08911, Sau11415, Sau16575, and Sau19276, which showed higher expression levels in higher salt concentration than low concentration and a response to salt stress. These expression patterns were corroborated through RT-qPCR analysis. The six differentially expressed SabZIP genes, all localized in the nucleus, exhibited positive regulation involved in the salt stress response. SabZIP14, SabZIP26, and SabZIP36 proteins could bind to the promoter region of downstream salt stress-related genes and activate their expressions. CONCLUSIONS: Our findings offer valuable insights into the evolutionary trajectory of the bZIP gene family in S. australis and shed light on their roles in responding to salt stress. In addition to fundamental genomic information, these results would serve as a foundational framework for future investigations into the regulation of salt stress responses in S. australis.


Subject(s)
Chenopodiaceae , Multigene Family , Phylogeny , Plant Proteins , Salt Stress , Chenopodiaceae/genetics , Chenopodiaceae/physiology , Salt Stress/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/physiology , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Gene Expression Profiling , Salt Tolerance/genetics , Promoter Regions, Genetic , Genes, Plant
2.
Data Brief ; 56: 110704, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39188361

ABSTRACT

The classification of the Uranoscopidae species is controversial and the Ichthyscopus pollicaris belonging to Uranoscopidae was first reported in 2019. In the present study, the whole genome sequence of I. pollicaris were generated by PacBio and Illumina platforms for the first time. After de novo assembly and correction of the high-quality PacBio data, a 527.25 Mb I. pollicaris genome with an N50 length of 11.25 Mb was finally generated. Meanwhile, 170.41 Mb repeating sequence, 21,263 genes, 784 miRNAs, 2,225 tRNAs, 3004 rRNAs, and 1422 snRNAs were annotated in I. pollicaris genome. Furthermore, 3,168 single-copy orthologous genes were applied to reconstructed the phylogenetic relationship between I. pollicaris and other 11 species. The draft genome sequences have been deposited in NCBI database with the accession number of PRJNA1071810.

3.
Genes (Basel) ; 15(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38790163

ABSTRACT

Sebastes schlegelii is one of the most commercially important marine fish in the northwestern Pacific. However, little information about the genome-wide genetic characteristics is available for S. schlegelii individuals from the Bohai and Yellow Seas. In this study, a total of 157,778, 174,480, and 188,756 single-nucleotide polymorphisms from Dalian (DL), Yantai (YT), and Qingdao (QD) coastal waters of China were, respectively, identified. Sixty samples (twenty samples per population) were clustered together, indicating shallow structures and close relationships with each other. The observed heterozygosity, expected heterozygosity, polymorphism information content, and nucleotide diversity ranged from 0.14316 to 0.17684, from 0.14035 to 0.17145, from 0.20672 to 0.24678, and from 7.63 × 10-6 to 8.77 × 10-6, respectively, indicating the slight difference in genetic diversity among S. schlegelii populations, and their general genetic diversity was lower compared to other marine fishes. The population divergence showed relatively low levels (from 0.01356 to 0.01678) between S. schlegelii populations. Dispersing along drifting seaweeds, as well as the ocean current that flows along the western and northern coasts of the Yellow Sea and southward along the eastern coast of China might be the major reasons for the weak genetic differentiation. These results form the basis of the population genetic characteristics of S. schlegelii based on GBS (Genotyping by Sequencing). In addition to basic population genetic information, our results provid a theoretical basis for further studies aimed at protecting and utilizing S. schlegelii resources.


Subject(s)
Fishes , Polymorphism, Single Nucleotide , Animals , China , Fishes/genetics , Fishes/classification , Genetics, Population , Metagenomics/methods , Perciformes/genetics , Oceans and Seas
4.
Sci Data ; 11(1): 523, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778061

ABSTRACT

Remora albescens, also known as white suckerfish, recognized for its distinctive suction-cup attachment behavior and medicinal significance. In this study, we produced a high-quality chromosome-level genome assembly of R. albescens through the integration of 23.87 Gb PacBio long reads, 64.54 Gb T7 short reads, and 88.63 Gb Hi-C data. Initially, we constructed a contig-level genome assembly totaling 605.30 Mb with a contig N50 of 23.12 Mb. Subsequently, employing Hi-C technology, approximately 99.68% (603.38 Mb) of the contig-level genome was successfully assigned to 23 pseudo-chromosomes. Through the integration of homologous-based predictions, ab initio predictions, and RNA-sequencing methods, we successfully identified a comprehensive set of 22,445 protein-coding genes. Notably, 96.36% (21,629 genes) of these were effectively annotated with functional information. The genome assembly achieved an estimated completeness of 98.1% according to BUSCO analysis. This work promotes the applicability of the R. albescens genome, laying a solid foundation for future investigations into genomics, biology, and medicinal importance within this species.


Subject(s)
Chromosomes , Decapodiformes , Genome , Animals , Decapodiformes/genetics , Molecular Sequence Annotation
5.
Sci Data ; 10(1): 507, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37532689

ABSTRACT

Cyclocarya paliurus, an endemic species in the genus Juglandaceae with the character of heterodichogamy, is one of triterpene-rich medicinal plants in China. To uncover the genetic mechanisms behind the special characteristics, we sequenced the genomes of two diploid (protandry, PA-dip and protogyny, PG-dip) and one auto-tetraploid (PA-tetra) C. paliurus genomes. Based on 134.9 (~225x), 75.5 (~125x) and 271.8 Gb (~226x) subreads of PacBio platform sequencing data, we assembled 586.62 Mb (contig N50 = 1.9 Mb), 583.45 Mb (contig N50 = 1.4 Mb), and 2.38 Gb (contig N50 = 430.9 kb) for PA-dip, PG-dip and PA-tetra genome, respectively. Furthermore, 543.53, 553.87, and 2168.65 Mb in PA-dip, PG-dip, and PA-tetra, were respectively anchored to 16, 16, and 64 pseudo-chromosomes using over 65.4 Gb (~109x), 68 Gb (~113x), and 264 (~220x) Hi-C sequencing data. Annotation of PA-dip, PG-dip, and PA-tetra genome assembly identified 34,699, 35,221, and 34,633 protein-coding genes (90,752 gene models) or allele-defined genes, respectively. In addition, 45 accessions from nine locations were re-sequenced, and more than 10 × coverage reads were generated.


Subject(s)
Genome, Plant , Juglandaceae , Chromosomes , Diploidy , Juglandaceae/genetics , Molecular Sequence Annotation , Phylogeny , Tetraploidy
6.
BMC Genomics ; 24(1): 287, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37248459

ABSTRACT

BACKGROUND: DNA methylation is one of the most abundant epigenetic modifications, which plays important roles in flower development, sex differentiation, and regulation of flowering time. Its pattern is affected by cytosine-5 DNA methyltransferase (C5-MTase) and DNA demethylase (dMTase). At present, there are no reports on C5-MTase and dMTase genes in heterodichogamous Cyclocarya paliurus. RESULTS: In this study, 6 CpC5-MTase and 3 CpdMTase genes were identified in diploid (2n = 2 × = 32) C. paliurus, while 20 CpC5-MTase and 13 CpdMTase genes were identified in autotetraploid (2n = 4 × = 64). 80% of identified genes maintained relatively fixed positions on chromosomes during polyploidization. In addition, we found that some DRM subfamily members didn't contain the UBA domain. The transcript abundance of CpC5-MTase and CpdMTase in male and female flowers of two morphs (protandry and protogyny) from diploidy was analyzed. Results showed that all genes were significantly up-regulated at the stage of floral bud break (S2), but significantly down-regulated at the stage of flower maturation (S4). At S2, some CpC5-MTase genes showed higher expression levels in PG-M than in PG-F, whereas some CpdMTase genes showed higher expression levels in PA-M than in PA-F. In addition, these genes were significantly associated with gibberellin synthesis-related genes (e.g. DELLA and GID1), suggesting that DNA methylation may play a role in the asynchronous floral development process through gibberellin signal. CONCLUSIONS: These results broaden our understanding of the CpC5-MTase and CpdMTase genes in diploid and autotetraploid C. paliurus, and provide a novel insight into regulatory mechanisms of DNA methylation in heterodichogamy.


Subject(s)
DNA Modification Methylases , Gibberellins , Male , Humans , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Methylation , DNA/metabolism , Diploidy
7.
Genomics Proteomics Bioinformatics ; 21(3): 455-469, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36775057

ABSTRACT

Cyclocarya paliurus is a relict plant species that survived the last glacial period and shows a population expansion recently. Its leaves have been traditionally used to treat obesity and diabetes with the well-known active ingredient cyclocaric acid B. Here, we presented three C. paliurus genomes from two diploids with different flower morphs and one haplotype-resolved tetraploid assembly. Comparative genomic analysis revealed two rounds of recent whole-genome duplication events and identified 691 genes with dosage effects that likely contribute to adaptive evolution through enhanced photosynthesis and increased accumulation of triterpenoids. Resequencing analysis of 45 C. paliurus individuals uncovered two bottlenecks, consistent with the known events of environmental changes, and many selectively swept genes involved in critical biological functions, including plant defense and secondary metabolite biosynthesis. We also proposed the biosynthesis pathway of cyclocaric acid B based on multi-omics data and identified key genes, in particular gibberellin-related genes, associated with the heterodichogamy in C. paliurus species. Our study sheds light on evolutionary history of C. paliurus and provides genomic resources to study the medicinal herbs.


Subject(s)
Gene Duplication , Plant Leaves , Humans , Plant Leaves/metabolism
8.
Int J Mol Sci ; 23(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35743203

ABSTRACT

Cyclocarya paliurus is an important medical plant owing to the diverse bioactive compounds in its leaves. However, the heterodichogamy with female and male functions segregation within protandry (PA) or protogyny (PG) may greatly affect seed quality and its plantations for medicinal use. To speculate on the factor playing the dominant role in regulating heterodichogamy in C. paliurus, based on phenotypic observations, our study performed a multi comparison transcriptome analysis on female and male buds (PG and PA types) using RNA-seq. For the female and male bud comparisons, a total of 6753 differentially expressed genes (DEGs) were detected. In addition, functional analysis revealed that these DEGs were significantly enriched in floral development, hormone, and GA-related pathways. As the dominant hormones responsible for floral differentiation and development, gibberellins (GAs) in floral buds from PG and PA types were quantified using HPLC-MS. Among the tested GAs, GA3 positively regulated the physiological differentiation (S0) and germination (S2) of floral buds. The dynamic changes of GA3 content and floral morphological features were consistent with the expression levels of GA-related genes. Divergences of GA3 contents at S0 triggered the asynchronism of physiological differentiation between male and female buds of intramorphs (PA-M vs. PA-F and PG-F vs. PG-M). A significant difference in GA3 content enlarged this asynchronism at S2. Thus, we speculate that GA3 plays the dominant role in the formation of heterodichogamy in C. paliurus. Meanwhile, the expression patterns of GA-related DEGs, including CPS, KO, GA20ox, GA2OX, GID1, and DELLA genes, which play central roles in regulating flower development, coincided with heterodichogamous characteristics. These results support our speculations well, which should be further confirmed.


Subject(s)
Gene Expression Regulation, Plant , Juglandaceae , Flowers/metabolism , Gene Expression Profiling , Gibberellins/metabolism , Juglandaceae/genetics , Transcriptome
9.
Int J Mol Sci ; 22(18)2021 Sep 19.
Article in English | MEDLINE | ID: mdl-34576289

ABSTRACT

MADS-box transcription factors (TFs) have fundamental roles in regulating floral organ formation and flowering time in flowering plants. In order to understand the function of MIKC-type MADS-box family genes in Cyclocarya paliurus (Batal.) Iljinskaja, we first implemented a genome-wide analysis of MIKC-type MADS-box genes in C. paliurus. Here, the phylogenetic relationships, chromosome location, conserved motif, gene structure, promoter region, and gene expression profile were analyzed. The results showed that 45 MIKC-type MADS-box were divided into 14 subfamilies: BS (3), AGL12 (1), AP3-PI (3), MIKC* (3), AGL15 (3), SVP (5), AGL17 (2), AG (3), TM8 (1), AGL6 (2), SEP (5), AP1-FUL (6), SOC1 (7), and FLC (1). The 43 MIKC-type MADS-box genes were distributed unevenly in 14 chromosomes, but two members were mapped on unanchored scaffolds. Gene structures were varied in the same gene family or subfamily, but conserved motifs shared similar distributions and sequences. The element analysis in promoters' regions revealed that MIKC-type MADS-box family genes were associated with light, phytohormone, and temperature responsiveness, which may play important roles in floral development and differentiation. The expression profile showed that most MIKC-type MADS-box genes were differentially expressed in six tissues (specifically expressed in floral buds), and the expression patterns were also visibly varied in the same subfamily. CpaF1st24796 and CpaF1st23405, belonging to AP3-PI and SEP subfamilies, exhibited the high expression levels in PA-M and PG-F, respectively, indicating their functions in presenting heterodichogamy. We further verified the MIKC-type MADS-box gene expression levels on the basis of transcriptome and qRT-PCR analysis. This study would provide a theoretical basis for classification, cloning, and regulation of flowering mechanism of MIKC-type MADS-box genes in C. paliurus.


Subject(s)
Flowers/growth & development , Flowers/genetics , Genome, Plant , MADS Domain Proteins/genetics , Magnoliopsida/genetics , Multigene Family , Chromosomes, Plant/genetics , Conserved Sequence/genetics , Gene Duplication , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , MADS Domain Proteins/metabolism , Nucleotide Motifs/genetics , Phylogeny , Promoter Regions, Genetic/genetics , Synteny/genetics
10.
Mitochondrial DNA B Resour ; 6(9): 2669-2671, 2021.
Article in English | MEDLINE | ID: mdl-34435115

ABSTRACT

Cyclocarya paliurus (Batal.) Iljinskaja, a monotypic species in Cyclocarya of Juglandaceae, is regarded as one of important medical plants in China. In order to reveal the alterations in chloroplast (cp) genome with nuclear genome duplication, we presented the complete cp genomes of C. paliurus, and firstly analyzed on the basis of ploidy type (tetraploid and diploid C. paliurus). The total length of the cp genome of tetraploid and diploid C. paliurus is 160,938 and 161,105 bp, respectively. Both type genome consist of a large single-copy (LSC) region (90,221 and 90,391 bp), a small single-copy (SSC) region (18,593 and 18,590 bp), and an pair of invert repeats (IRs) regions (26,062 and 26,062 bp). Tetraploid and diploid plastid genome contain 132 and 137 genes, 87 and 88 protein-coding genes, 37 and 39 tRNA genes, and both eight rRNA genes, respectively. Closely phylogenetic relationship by analyzing 23 cp genomes suggests that tetraploid C. paliurus probably originated from diploid C. paliurus.

SELECTION OF CITATIONS
SEARCH DETAIL