Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 19(11)2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31167505

ABSTRACT

The small and light-weight pipeline is widely used in hydraulic system for aerospace engineering. The crack is one of the most common failures in the pipelines so that its incipient detection can further avoid the catastrophic damage of the piping system. The electrical and piezoelectric sensors are conventionally used for the structural health monitoring (SHM), while these are not suitable for the cascaded pipelines in harsh environment because the added mass will change the modal characteristics of the cascaded pipelines. The Fiber Bragg Grating (FBG) sensor with light-weight, multiplexed, and anti-electromagnetic interference properties, are employed to obtain the modal strain transmissibility with a novel diagram of the operational modal analysis (OMA). Based on the OMA an enhanced damage indicator is proposed to detect the crack. After going through analytical modeling, finite element modeling (FEM) and its corresponding experiments, it is concluded that the presented method is effective and accurate to detect and locate the crack.

2.
Sensors (Basel) ; 19(4)2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30781784

ABSTRACT

Research on data-driven fault diagnosis methods has received much attention in recent years. The deep belief network (DBN) is a commonly used deep learning method for fault diagnosis. In the past, when people used DBN to diagnose gear pitting faults, it was found that the diagnosis result was not good with continuous time domain vibration signals as direct inputs into DBN. Therefore, most researchers extracted features from time domain vibration signals as inputs into DBN. However, it is desirable to use raw vibration signals as direct inputs to achieve good fault diagnosis results. Therefore, this paper proposes a novel method by stacking spare autoencoder (SAE) and Gauss-Binary restricted Boltzmann machine (GBRBM) for early gear pitting faults diagnosis with raw vibration signals as direct inputs. The SAE layer is used to compress the raw vibration data and the GBRBM layer is used to effectively process continuous time domain vibration signals. Vibration signals of seven early gear pitting faults collected from a gear test rig are used to validate the proposed method. The validation results show that the proposed method maintains a good diagnosis performance under different working conditions and gives higher diagnosis accuracy compared to other traditional methods.

3.
Sensors (Basel) ; 15(9): 24214-29, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26393616

ABSTRACT

A fiber Bragg grating (FBG) sensing based triaxial vibration sensor has been presented in this paper. The optical fiber is directly employed as elastomer, and the triaxial vibration of a measured body can be obtained by two pairs of FBGs. A model of a triaxial vibration sensor as well as decoupling principles of triaxial vibration and experimental analyses are proposed. Experimental results show that: sensitivities of 86.9 pm/g, 971.8 pm/g and 154.7 pm/g for each orthogonal sensitive direction with linearity are separately 3.64%, 1.50% and 3.01%. The flat frequency ranges reside in 20-200 Hz, 3-20 Hz and 4-50 Hz, respectively; in addition, the resonant frequencies are separately 700 Hz, 40 Hz and 110 Hz in the x/y/z direction. When the sensor is excited in a single direction vibration, the outputs of sensor in the other two directions are consistent with the outputs in the non-working state. Therefore, it is effectively demonstrated that it can be used for three-dimensional vibration measurement.

4.
Sensors (Basel) ; 14(1): 1372-93, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24424467

ABSTRACT

In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.


Subject(s)
Acoustics , Tooth Diseases/diagnosis , Vibration , Humans , Tooth Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...