Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 365
Filter
1.
Eur J Pharmacol ; 976: 176699, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825302

ABSTRACT

Clinically, statins have long been used for the prevention and treatment of chronic renal diseases, however, the underlying mechanisms are not fully elucidated. The present study investigated the effects of atorvastatin on diabetes renal injury and ferroptosis signaling. A mouse model of diabetes was established by the intraperitoneal injection of streptozotocin (50 mg/kg/day) plus a high fat diet with or without atorvastatin treatment. Diabetes mice manifested increased plasma glucose and lipid profile, proteinuria, renal injury and fibrosis, atorvastatin significantly lowered plasma lipid profile, proteinuria, renal injury in diabetes mice. Atorvastatin reduced renal reactive oxygen species (ROS), iron accumulation and renal expression of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), transferrin receptor 1 (TFR1), and increased renal expression of glutathione peroxidase 4 (GPX4), nuclear factor erythroid 2-related factor (NRF2) and ferritin heavy chain (FTH) in diabetes mice. Consistent with the findings in vivo, atorvastatin prevented high glucose-induced ROS formation and Fe2+ accumulation, an increase in the expression of 4-HNE, MDA and TFR1, and a decrease in cell viability and the expression of NRF2, GPX4 and FTH in HK2 cells. Atorvastatin also reversed ferroptosis inducer erastin-induced ROS production, intracellular Fe2+ accumulation and the changes in the expression of above-mentioned ferroptosis signaling molecules in HK2 cells. In addition, atorvastatin alleviated high glucose- or erastin-induced mitochondria injury. Ferroptosis inhibitor ferrostatin-1 and antioxidant N-acetylcysteine (NAC) equally reversed the expression of high glucose-induced ferroptosis signaling molecules. Our data support the notion that statins can inhibit diabetes-induced renal oxidative stress and ferroptosis, which may contribute to statins protection of diabetic nephropathy.

2.
Mol Psychiatry ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755244

ABSTRACT

Pre-existing psychiatric disorders were linked to an increased susceptibility to COVID-19 during the initial outbreak of the pandemic, while evidence during Omicron prevalence is lacking. Leveraging data from two prospective cohorts in China, we identified incident Omicron infections between January 2023 and April 2023. Participants with a self-reported history or self-rated symptoms of depression or anxiety before the Omicron pandemic were considered the exposed group, whereas the others were considered unexposed. We employed multivariate logistic regression models to examine the association of pre-existing depression or anxiety with the risk of any or severe Omicron infection indexed by medical interventions or severe symptoms. Further, we stratified the analyses by polygenic risk scores (PRSs) for COVID-19 and repeated the analyses using the UK Biobank data. We included 10,802 individuals from the Chinese cohorts (mean age = 51.1 years, 45.6% male), among whom 7841 (72.6%) were identified as cases of Omicron infection. No association was found between any pre-existing depression or anxiety and the overall risk of Omicron infection (odds ratio [OR] =1.04, 95% confidence interval [CI] 0.95-1.14). However, positive associations were noted for severe Omicron infection, either as infections requiring medical interventions (1.26, 1.02-1.54) or with severe symptoms (≥3: 1.73, 1.51-1.97). We obtained comparable estimates when stratified by COVID-19 PRS level. Additionally, using clustering method, we identified eight distinct symptom patterns and found associations between pre-existing depression or anxiety and the patterns characterized by multiple or complex severe symptoms including cough and taste and smell decline (ORs = 1.42-2.35). The results of the UK Biobank analyses corroborated findings of the Chinese cohorts. In conclusion, pre-existing depression and anxiety was not associated with the risk of Omicron infection overall but an elevated risk of severe Omicron infection, supporting the continued efforts on monitoring and possible early intervention in this high-risk population during Omicron prevalence.

3.
Exp Biol Med (Maywood) ; 249: 10112, 2024.
Article in English | MEDLINE | ID: mdl-38715976

ABSTRACT

Chronic inflammation is a key element in the progression of essential hypertension (EH). Calcium plays a key role in inflammation, so its receptor, the calcium-sensing receptor (CaSR), is an essential mediator of the inflammatory process. Compelling evidence suggests that CaSR mediates inflammation in tissues and immune cells, where it mediates their activity and chemotaxis. Macrophages (Mφs) play a major role in the inflammatory response process. This study provided convincing evidence that R568, a positive regulator of CaSR, was effective in lowering blood pressure in spontaneously hypertensive rats (SHRs), improving cardiac function by alleviating cardiac hypertrophy and fibrosis. R568 can increase the content of CaSR and M2 macrophages (M2Mφs, exert an anti-inflammatory effect) in myocardial tissue, reduce M1 macrophages (M1Mφs), which have a pro-inflammatory effect in this process. In contrast, NPS2143, a negative state regulator of CaSR, exerted the opposite effect in all of the above experiments. Following this study, R568 increased CaSR content in SHR myocardial tissue, lowered blood pressure, promoted macrophages to M2Mφs and improved myocardial fibrosis, but interestingly, both M1Mφs and M2Mφs were increased in the peritoneal cavity of SHRs, the number of M2Mφs remained lower than M1Mφs. In vitro, R568 increased CaSR content in RAW264.7 cells (a macrophage cell line), regulating intracellular Ca2+ ([Ca2+]i) inhibited NOD-like receptor family protein 3 (NLRP3) inflammasome activation and ultimately prevented its conversion to M1Mφs. The results showed that a decrease in CaSR in hypertensive rats causes further development of hypertension and cardiac damage. EH myocardial remodeling can be improved by CaSR overexpression by suppressing NLRP3 inflammasome activation and macrophage polarization toward M1Mφs and increasing M2Mφs.


Subject(s)
Macrophages , Receptors, Calcium-Sensing , Ventricular Remodeling , Animals , Male , Mice , Rats , Blood Pressure , Fibrosis/metabolism , Hypertension/metabolism , Hypertension/pathology , Macrophages/metabolism , Myocardium/pathology , Myocardium/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Inbred SHR , Receptors, Calcium-Sensing/metabolism , Ventricular Remodeling/physiology
4.
ACS Appl Mater Interfaces ; 16(17): 21689-21698, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629436

ABSTRACT

Plasmonic nanozymes bring enticing prospects for catalytic sterilization by leveraging plasmon-engendered hot electrons. However, the interface between plasmons and nanozymes as the mandatory path of hot electrons receives little attention, and the mechanisms of plasmonic nanozymes still remain to be elucidated. Herein, a plasmonic carbon-dot nanozyme (FeCG) is developed by electrostatically assembling catalytic iron-doped carbon dots (Fe-CDs) with plasmonic gold nanorods. The energy harvesting and hot-electron migration are remarkably expedited by a spontaneous organic-inorganic heterointerface holding a Fermi level-induced interfacial electric field. The accumulated hot electrons are then fully utilized by conductive Fe-CDs to boost enzymatic catalysis toward overproduced reactive oxygen species. By synergizing with localized heating from hot-electron decay, FeCG achieves rapid and potent disinfection with an antibacterial efficiency of 99.6% on Escherichia coli within 5 min and is also effective (94.2%) against Staphylococcus aureus. Our work presents crucial insights into the organic-inorganic heterointerface in advanced plasmonic biocidal nanozymes.


Subject(s)
Anti-Bacterial Agents , Carbon , Escherichia coli , Gold , Staphylococcus aureus , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Carbon/chemistry , Catalysis , Gold/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Quantum Dots/chemistry , Electron Transport , Iron/chemistry
5.
Zhen Ci Yan Jiu ; 49(3): 274-282, 2024 Mar 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500324

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) on the changes of behavior and hippocampal inflammatory factors in rats with chronic fatigue syndrome (CFS), so as to explore its possible mechanisms in the treatment of CFS. METHODS: Twenty-seven SD rats were randomly divided into control, model and electroacupuncture (EA) groups (n=9 rats in each group). The CFS model was established by multi-factor compound stress stimulation method. Rats of the EA group received EA (10 Hz) at "Shenting" (GV24) penetrating "Baihui" (GV20), "Dazhui" (GV14) for 15 min, twice a day for 14 days. The general conditions, Morris water maze test, open field test, the exhausted running platform were conducted for determining the rats' locomotor and learning-memory activities. H.E. staining was used to observe the morphological structure of neurons in hippocampal CA1 region. The contents of interleukin (IL)-10, IL-17 and transforming growth factor (TGF) ß1 in hippocampus and serum of rats were detected by ELISA, and the positive expressions of IL-10, IL-17 and TGF-ß1 in hippocampal CA1 region were detected by immunofluorescence staining. RESULTS: Compared with the control group, the score of general condition was increased (P<0.05), the escape latency was prolonged (P<0.05), the number of crossing the original platform was decreased (P<0.05), the numbers of crossing the grid and entering the central area were increased (P<0.05), and the exhaustive treadmill time was shortened (P<0.05) in the model group. The contents of IL-10 in the hippocampus and serum were decreased (P<0.05), while IL-17 and TGF-ß1 contents were increased (P<0.05). The immunofluorescence intensity of IL-10 in the hippocampus was decreased (P<0.05), while the intensity of IL-17 and TGF-ß1 were increased (P<0.05). After treatment, compared with the model group, the score of general condition was decreased (P<0.05), the escape latency was shortened (P<0.05), the number of crossing the original platform was increased (P<0.05), the numbers of crossing the grid and entering the central area were decreased (P<0.05), and the exhaustive treadmill time was prolonged (P<0.05) in the EA group. The contents of IL-10 in the hippocampus and serum were increased (P<0.05), while IL-17 and TGF-ß1 levels were decreased (P<0.05). The immunofluorescence intensity of IL-10 in the hippocampus was increased (P<0.05), while the intensity of IL-17 and TGF-ß1 were decreased (P<0.05). H.E. staining showed that in the model group, the number of neurons in the hippocampus decreased, with disordered arrangement and loose structure, and a small numbers of neuronal nuclei were missing. The degree of tissue damage of the EA group was milder than that of the model group. CONCLUSIONS: EA can alleviate fatigue and spatial learning and memory impairment in CFS rats, which may be related to the regulation of peripheral and central inflammation.


Subject(s)
Electroacupuncture , Fatigue Syndrome, Chronic , Rats , Animals , Rats, Sprague-Dawley , Interleukin-10 , Fatigue Syndrome, Chronic/therapy , Interleukin-17/genetics , Transforming Growth Factor beta1/genetics , Hippocampus
6.
Int J Biol Macromol ; 265(Pt 1): 130644, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462102

ABSTRACT

The main proteinase (Mpro) of SARS-CoV-2 plays a critical role in cleaving viral polyproteins into functional proteins required for viral replication and assembly, making it a prime drug target for COVID-19. It is well known that noncompetitive inhibition offers potential therapeutic options for treating COVID-19, which can effectively reduce the likelihood of cross-reactivity with other proteins and increase the selectivity of the drug. Therefore, the discovery of allosteric sites of Mpro has both scientific and practical significance. In this study, we explored the binding characteristics and inhibiting process of Mpro activity by two recently reported allosteric inhibitors, pelitinib and AT7519 which were obtained by the X-ray screening experiments, to probe the allosteric mechanism via molecular dynamic (MD) simulations. We found that pelitinib and AT7519 can stably bind to Mpro far from the active site. The binding affinity is estimated to be -24.37 ± 4.14 and - 26.96 ± 4.05 kcal/mol for pelitinib and AT7519, respectively, which is considerably stable compared with orthosteric drugs. Furthermore, the strong binding caused clear changes in the catalytic site of Mpro, thus decreasing the substrate accessibility. The community network analysis also validated that pelitinib and AT7519 strengthened intra- and inter-domain communication of Mpro dimer, resulting in a rigid Mpro, which could negatively impact substrate binding. In summary, our findings provide the detailed working mechanism for the two experimentally observed allosteric sites of Mpro. These allosteric sites greatly enhance the 'druggability' of Mpro and represent attractive targets for the development of new Mpro inhibitors.


Subject(s)
Aminoquinolines , Aniline Compounds , COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Molecular Docking Simulation , Cysteine Endopeptidases/metabolism , Molecular Dynamics Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
7.
Int J Biol Macromol ; 262(Pt 1): 129867, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309400

ABSTRACT

The purpose of this study was to fabricate composite nanoparticles using soy protein isolate (SPI) and sorghum bran arabinoxylan (AX) for the delivery of curcumin (Cur). The influences of AX concentrations on the physicochemical characteristic, stability and bioaccessibility of curcumin were investigated. The findings showed that the encapsulation efficiency of curcumin obviously increased upon incorporating AX in comparison to SPI-Cur particles. Hydrogen bonds and hydrophobic interactions were the primary driving forces for the formation of SPI-Cur-AX nanoparticles (SCA). SCA nanoparticles with 1.00 % AX exhibited a uniform size with orderly distribution, suggesting its remarkable physical stability due to the strengthened electrostatic repulsion. However, excessive AX led to aggregation of particles, a noticeable increase in size, and subsequently, a reduction in stability. Due to the heightened free radical scavenging capacity of sorghum AX, SCA nanoparticles exhibited superior antioxidant capabilities. Compared to free curcumin, encapsulation within composite particles significantly enhanced the retention rate and bioaccessibility of curcumin. This improvement was attributed to the potent emulsification ability of AX, which coordinated with bile salt to promote the transfer of curcumin into micelles. The research provides an effective strategy for developing food-grade delivery carriers aimed at enhancing dispersibility, stability and bioaccessibility of the fat-soluble bioactives.


Subject(s)
Curcumin , Nanoparticles , Sorghum , Xylans , Curcumin/chemistry , Soybean Proteins/chemistry , Sorghum/metabolism , Polysaccharides/chemistry , Nanoparticles/chemistry , Particle Size , Drug Carriers/chemistry
8.
Eur J Clin Pharmacol ; 80(6): 855-867, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38416166

ABSTRACT

PURPOSE: To examine the associations between use of statins and risks of various ovarian, uterine, and cervical diseases, including ovarian cancer, endometrial cancer, cervical cancer, ovarian cyst, polycystic ovarian syndrome, endometriosis, endometrial hyperplasia, endometrial polyp, and cervical polyp. METHODS: We conducted a cohort study among female participants in the UK Biobank. Information on the use of statins was collected through verbal interview. Outcome information was obtained by linking to national cancer registry data and hospital inpatient data. We used Cox proportional hazards regression to examine the associations. RESULTS: A total of 180,855 female participants (18,403 statin users and 162,452 non-users) were included. Use of statins was significantly associated with increased risks of cervical cancer (adjusted hazard ratio (HR), 1.55; 95% confidence interval (95% CI), 1.05-2.30) and polycystic ovarian syndrome (adjusted HR, 4.39; 95% CI, 1.68-11.49). However, we observed no significant association between use of statins and risk of ovarian cancer, endometrial cancer, ovarian cyst, endometriosis, endometrial hyperplasia, endometrial polyp, or cervical polyp. CONCLUSION: Our findings suggest that use of statins is associated with increased risks of cervical cancer and polycystic ovarian syndrome, but is not associated with increased or decreased risk of ovarian cancer, endometrial cancer, ovarian cyst, endometriosis, endometrial polyp, or cervical polyp.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Ovarian Neoplasms , Humans , Female , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , United Kingdom/epidemiology , Middle Aged , Cohort Studies , Adult , Ovarian Neoplasms/epidemiology , Aged , Biological Specimen Banks , Polycystic Ovary Syndrome/epidemiology , Polycystic Ovary Syndrome/drug therapy , Uterine Cervical Diseases/epidemiology , Uterine Cervical Diseases/chemically induced , Uterine Diseases/chemically induced , Uterine Diseases/epidemiology , Risk Factors , Uterine Cervical Neoplasms/epidemiology , Proportional Hazards Models , UK Biobank
9.
BMC Med ; 22(1): 59, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38331807

ABSTRACT

BACKGROUND: Adverse childhood experiences (ACEs), including childhood maltreatment, have been linked with increased risk of diabetes and obesity during adulthood. A comprehensive assessment on the associations between childhood maltreatment and all major endocrine diseases, as well as the relative importance of different proposed mechanistic pathways on these associations, is currently lacking. METHODS: Based on the UK Biobank, we constructed a cohort including 151,659 participants with self-reported data on childhood maltreatment who were 30 years of age or older on/after January 1, 1985. All participants were followed from the index date (i.e., January 1, 1985, or their 30th birthday, whichever came later) until the first diagnosis of any or specific (12 individual diagnoses and 9 subtypes) endocrine diseases, death, or the end of follow-up (December 31, 2019), whichever occurred first. We used Cox models to examine the association of childhood maltreatment, treated as continuous (i.e., the cumulative number of experienced childhood maltreatment), ordinal (i.e., 0, 1 and ≥ 2), or binary (< 2 and ≥ 2) variable, with any and specific endocrine diseases, adjusted for multiple covariates. We further examined the risk of having multiple endocrine diseases using Linear or Logistic Regression models. Then, sequential mediation analyses were performed to assess the contribution of four possible mechanisms (i.e., suboptimal socioeconomic status (SES), psychological adversities, unfavorable lifestyle, and biological alterations) on the observed associations. RESULTS: During an average follow-up of 30.8 years, 20,885 participants received a diagnosis of endocrine diseases. We observed an association between the cumulative number of experienced childhood maltreatment and increased risk of being diagnosed with any endocrine disease (adjusted hazard ratio (HR) = 1.10, 95% confidence interval 1.09-1.12). The HR was 1.26 (1.22-1.30) when comparing individuals ≥ 2 with those with < 2 experienced childhood maltreatment. We further noted the most pronounced associations for type 2 diabetes (1.40 (1.33-1.48)) and hypothalamic-pituitary-adrenal (HPA)-axis-related endocrine diseases (1.38 (1.17-1.62)), and the association was stronger for having multiple endocrine diseases, compared to having one (odds ratio (95% CI) = 1.24 (1.19-1.30), 1.35 (1.27-1.44), and 1.52 (1.52-1.53) for 1, 2, and ≥ 3, respectively). Sequential mediation analyses showed that the association between childhood maltreatment and endocrine diseases was consistently and most distinctly mediated by psychological adversities (15.38 ~ 44.97%), while unfavorable lifestyle (10.86 ~ 25.32%) was additionally noted for type 2 diabetes whereas suboptimal SES (14.42 ~ 39.33%) for HPA-axis-related endocrine diseases. CONCLUSIONS: Our study demonstrates that adverse psychological sequel of childhood maltreatment constitutes the main pathway to multiple endocrine diseases, particularly type 2 diabetes and HPA-axis-related endocrine diseases. Therefore, increased access to evidence-based mental health services may also be pivotal in reducing the risk of endocrine diseases among childhood maltreatment-exposed individuals.


Subject(s)
Child Abuse , Diabetes Mellitus, Type 2 , Endocrine System Diseases , Child , Humans , Adult , Mediation Analysis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Child Abuse/psychology , Endocrine System Diseases/epidemiology , Endocrine System Diseases/etiology , Obesity
10.
Nat Commun ; 15(1): 1209, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332132

ABSTRACT

Anxiety/stress-related disorders have been associated with multiple diseases, whereas a comprehensive assessment of the structure and interplay of subsequent associated diseases and their genetic underpinnings is lacking. Here, we first identify 136, out of 454 tested, medical conditions associated with incident anxiety/stress-related disorders attended in specialized care using a population-based cohort from the nationwide Swedish Patient Register, comprising 70,026 patients with anxiety/stress-related disorders and 1:10 birth year- and sex-matched unaffected individuals. By combining findings from the comorbidity network and disease trajectory analyses, we identify five robust disease clusters to be associated with a prior diagnosis of anxiety/stress-related disorders, featured by predominance of psychiatric disorders, eye diseases, ear diseases, cardiovascular diseases, and skin and genitourinary diseases. These five clusters and their featured diseases are largely validated in the UK Biobank. GWAS analyses based on the UK Biobank identify 3, 33, 40, 4, and 16 significantly independent single nucleotide polymorphisms for the link to the five disease clusters, respectively, which are mapped to several distinct risk genes and biological pathways. These findings motivate further mechanistic explorations and aid early risk assessment for cluster-based disease prevention among patients with newly diagnosed anxiety/stress-related disorders in specialized care.


Subject(s)
Anxiety Disorders , Disease Hotspot , Humans , Anxiety Disorders/epidemiology , Anxiety Disorders/genetics , Anxiety/epidemiology , Anxiety/genetics , Comorbidity , Polymorphism, Single Nucleotide
11.
MedComm (2020) ; 5(1): e461, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38222314

ABSTRACT

Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that form under pathological conditions. However, the predictive value of TLS in clear cell renal cell carcinoma (ccRCC) for immunotherapies remains unclear. We comprehensively assessed the implications for prognosis and immunological responses of the TLS spatial and maturation heterogeneity in 655 ccRCC patients. A higher proportion of early-TLS was found in peritumoral TLS, while intratumoral TLS mainly comprised secondary follicle-like TLS (SFL-TLS), indicating markedly better survival. Notably, presence of TLS, especially intratumoral TLS and SFL-TLS, significantly correlated with better survival and objective reflection rate for ccRCC patients receiving anti-Programmed Cell Death Protein-1 (PD-1)/Programmed Cell Death-Ligand-1 (PD-L1) immunotherapies. In peritumoral TLS cluster, primary follicle-like TLS, the proportion of tumor-associated macrophages, and Treg infiltration in the peritumoral regions increased prominently, suggesting an immunosuppressive tumor microenvironment. Interestingly, spatial transcriptome annotation and multispectral fluorescence showed that an abundance of mature plasma cells within mature TLS has the capacity to produce IgA and IgG, which demonstrate significantly higher objective response rates and a superior prognosis for ccRCC patients subjected to immunotherapy. In conclusion, this study revealed the implications of TLS spatial and maturation heterogeneity on the immunological status and clinical responses, allowing the improvement of precise immunotherapies of ccRCC.

12.
ACS Nano ; 18(4): 3814-3825, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38230632

ABSTRACT

Nanomaterials with enzyme-mimicking functions, termed nanozymes, offer attractive opportunities for biocatalysis and biomedicine. However, manipulating nanozyme selectivity poses an insurmountable hurdle. Here, we propose the concept of an energy-governed electron lock that controls electron transfer between nanozyme and substrates to achieve selectivity manipulation of enzyme-like catalysis. An electron lock can be constructed and opened, via modulating the nanozyme's electron energy to match the energy barrier of enzymatic reactions. An iron-doped carbon dot (FeCD) nanozyme with easy-to-regulate electron energy is selected as a proof of concept. Through regulating the conduction band which dominates electron energy, activatable oxidase and selective peroxidase (POD) with substrate affinity 123-fold higher than that of natural horseradish peroxidase (HRP) is achieved. Furthermore, while maintaining selectivity, FeCDs exhibit catalytic kinetics comparable to that of HRP upon transforming photons into electrons. Superior selectivity, efficient catalysis, and undetectable biotoxicity energize FeCDs as potent targeted drugs on antibiotic-resistant bacterial abscesses. An electron lock provides a robust strategy to manipulate selectivity toward advanced nanozymes.


Subject(s)
Electrons , Peroxidases , Peroxidase , Horseradish Peroxidase , Catalysis
13.
Eur J Epidemiol ; 39(2): 207-218, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38198037

ABSTRACT

The China Surgery and Anaesthesia Cohort (CSAC) study was launched in July 2020 and is an ongoing prospective cohort study recruiting patients aged 40-65 years who underwent elective surgeries with general anaesthesia across four medical centres in China. The general objective of the CSAC study is to improve our understanding of the complex interaction between environmental and genetic components as well as to determine their effects on a wide range of interested surgery/anaesthesia-related outcomes. To achieve this goal, we collected enriched phenotypic data, e.g., sociodemographic characteristics, lifestyle factors, perioperative neuropsychological changes, anaesthesia- and surgery-related complications, and medical conditions, at recruitment, as well as through both active (at 1, 3, 7 days and 1, 3, 6, 12 months after surgery) and passive (for more than 1 year after surgery) follow-up assessments. We also obtained omics data from blood samples. In addition, COVID-19-related information was collected from all participants since January 2023, immediately after COVID-19 restrictions were eased in China. As of July 18, 2023, 12,766 participants (mean age = 52.40 years, 57.93% were female) completed baseline data collection (response rate = 94.68%), among which approximately 70% donated blood and hair samples. The follow-up rates within 12 months after surgery were > 92%. Our initial analyses have demonstrated the incidence of and risk factors for chronic postsurgical pain (CPSP) and postoperative cognitive dysfunction (POCD) among middle-aged Chinese individuals, which may prompt further mechanistic exploration and facilitate the development of effective interventions for preventing those conditions. Additional studies, such as genome-wide association analyses for identifying the genetic determinants of CPSP and POCD, are ongoing, and their findings will be released in the future.


Subject(s)
Anesthesia , COVID-19 , Middle Aged , Humans , Female , Male , Genome-Wide Association Study , Prospective Studies , Anesthesia/adverse effects , COVID-19/epidemiology , China/epidemiology
14.
Mar Pollut Bull ; 199: 115984, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176162

ABSTRACT

Soil microbes play vital roles in estuarine wetlands. Understanding the soil bacterial community structure and function profiles is essential to reveal the ecological functions of microbes in estuarine wetlands. Herein, soil samples were collected from Liao River estuarine wetland, Northeast China, along the river to the estuarine mouth, and soil bacterial communities were explored. Results showed that soil physiochemical properties, bacterial community structure and functions exhibited distinct variations influenced by geographical location. Bacterial phyla in soils were dominated by Proteobacteria and Bacteroidetes, while Gillisia and Woeseia were the predominant genera. Soil pH, electrical conductivity and nitrogen-related nutrients were the important factors affecting bacterial community structure. Based on PICRUSt prediction, the genes related to metabolism of nitrogen, sulfur and methane showed spatial distribution patterns, and the abundances of most biomarker genes increased as the distance from estuarine mouth extended. These findings could enrich the understanding of soil microbiome in estuarine wetlands.


Subject(s)
Soil , Wetlands , Soil/chemistry , Rivers , Bacteria/genetics , China , Nitrogen , Soil Microbiology
15.
Br J Anaesth ; 132(2): 359-371, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37953200

ABSTRACT

BACKGROUND: Both preoperative psychological symptoms and chronic postsurgical pain (CPSP) are prevalent conditions and major concerns among surgery patients, with inconclusive associations. METHODS: Based on the China Surgery and Anaesthesia Cohort (CSAC), we recruited 8350 surgery patients (40-65 yr old) from two medical centres between July 2020 and March 2023. Patients with preoperative psychological symptoms (i.e. anxiety, depression, stress reaction, and poor sleep quality) were identified using corresponding well-established scales. We then examined the associations of individual preoperative psychological symptoms and major patterns of preoperative psychological symptoms (identified by k-means clustering analysis) with CPSP, and different pain trajectories within 3 months. Lastly, mediation analyses were conducted to elucidate the mediating role of surgery/anaesthesia-related factors and the presence of 1-month postoperative psychological symptoms on the studied associations. RESULTS: We included 1302 (1302/8350, 15.6%) CPSP patients. When analysed separately, all studied preoperative psychological symptoms were associated with increased CPSP risk, with the most pronounced odds ratio noted for anxiety (1.52, 95% confidence interval [CI] 1.23-1.86). Compared with patients clustered in the minor symptom group, excess risk of CPSP and experiencing an increasing pain trajectory was increased among patients with preoperative psychological symptoms featured by sleep disturbances (odds ratio=1.46, 95% CI 1.25-1.70 for CPSP and 1.58, 95% CI 1.20-2.08 for increasing pain trajectory) and multiple psychological symptoms (1.84 [95% CI 1.48-2.28] and 4.34 [95% CI 3.20-5.88]). Mediation analyses revealed acute/subacute postsurgical pain and psychological symptoms existing 1 month after surgery as notable mediators of the observed associations. CONCLUSIONS: The presence of preoperative psychological symptoms might individually or jointly increase the risk of chronic postsurgical pain or experiencing deterioration in pain trajectory. Interventions for managing acute/subacute postsurgical pain and psychological symptoms at 1 month after surgery might help reduce such risk. CLINICAL TRIAL REGISTRATION: ChiCTR2000034039.


Subject(s)
Anesthesia , Chronic Pain , Humans , Cohort Studies , Prospective Studies , Chronic Pain/epidemiology , Chronic Pain/etiology , Chronic Pain/diagnosis , Pain, Postoperative/diagnosis , Risk Factors
16.
J Immunother Cancer ; 11(12)2023 12 01.
Article in English | MEDLINE | ID: mdl-38040418

ABSTRACT

BACKGROUND: Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop postnatally in non-lymphoid tissues and are associated with pathological conditions. TLS typically comprise B-cell follicles containing and are encompassed by T- cell zones and dendritic cells. The prognostic and predictive value of TLS in the tumor microenvironment (TME) as potential mediators of antitumor immunity have gained interest. However, the precise relationship between localization and maturation of TLS and the clinical outcome of their presence in clear cell renal cell carcinoma (ccRCC) is yet to be elucidated. METHODS: Immunohistochemistry and multispectral fluorescence were used to evaluate the TLS heterogeneity along with TME cell-infiltrating characterizations. A thorough investigation of the prognostic implications of the TLS heterogeneity in 395 patients with ccRCC from two independent cohorts was conducted. Associations between TLS heterogeneity and immunologic activity were assessed by quantifying the immune cell infiltration. RESULTS: Infiltrated TLS were identified in 34.2% of the ccRCC samples (N=395). These TLS were found to be tumor-proximal, tumor-distal, or both in 37.8%, 74.1%, and 11.9% of the TLS-positive cases, respectively. A higher proportion of early TLS was found in tumor-distal TLS (p=0.016), while tumor-proximal TLS primarily comprised secondary follicle-like structures (p=0.004). In the main study cohort (Fudan University Shanghai Cancer Center, N=290), Kaplan-Meier analyses revealed a significant correlation between the presence of tumor-proximal TLS and improved progression-free survival (PFS, p<0.001) and overall survival (OS, p=0.002). Conversely, the presence of tumor-distal TLS was associated with poor PFS (p=0.02) and OS (p=0.021). These findings were further validated in an external validation set of 105 patients with ccRCC. Notably, the presence of mature TLS (namely secondary follicle-like TLS, with CD23+ germinal center) was significantly associated with better clinical outcomes in patients with ccRCC. Furthermore, novel nomograms incorporating the presence of tumor-proximal TLS demonstrated remarkable predictability for the 8-year outcomes of resected ccRCC (area under the curve >0.80). Additionally, ccRCC samples with tumor-distal TLS enriched with primary follicle-like TLS exhibited higher programmed death-ligand 1 tumor-associated macrophages levels and regulatory T cells infiltration in the tumor-distal region, indicative of a suppressive TME. CONCLUSION: This study for the first time elucidates the impact of TLS localization and maturation heterogeneities on the divergent clinical outcomes of ccRCC. The findings reveal that most TLS in ccRCC are located in the tumor-distal area and are associated with immature, immunosuppressive characterizations. Furthermore, our findings corroborate previous research demonstrating that tumor-proximal TLS were associated with favorable clinical outcomes.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Tertiary Lymphoid Structures , Humans , Carcinoma, Renal Cell/pathology , China , Prognosis , Kidney Neoplasms/pathology , Tumor Microenvironment
17.
PeerJ ; 11: e16179, 2023.
Article in English | MEDLINE | ID: mdl-37941932

ABSTRACT

Cultivation of high-yield varieties and unbalanced fertilization have induced micronutrient deficiency in soils worldwide. Zinc (Zn) is an essential nutrient for plant growth and its deficiency is most common in alkaline and calcareous soils. Therefore, this study aimed to evaluate the effect of Zn applied either alone or in combination with foliar application on the quality and production of wheat grown in alkaline soils. Zn was applied in the form of zinc sulfate (ZnSo4) to the soil and as a foliar spray during the sowing and tillering stages, respectively. Results showed that Zn fertilization of wheat, irrespective of modes of application, significantly increased grain and biological yield, grain per spike, and 1,000 grains weight over control; however, its effect was more noticeable when applied as 7.5 kg ha-1 of soil Zn combined with foliar Zn at 2.5 kg ha-1. Zn application significantly increased the grain protein content from 9.40% in the control to a maximum of 11.83% at soil Zn of 10 kg ha-1. Similarly, Zn application improved Zn, phosphorus (P), and potassium (K) concentrations in wheat grains. Moreover, correlation analysis showed that the grain Zn concentration was positively correlated with the grain P concentration. The correlation between P concentration in wheat grains and 1,000 grain weight was not significant. A total of 1,000 grains weight was positively correlated with tillers per plant, grain yield, and biological yield. There were positive correlations between protein content, biological yield, grain yield, and tillers per plant. Therefore, soil-applied Zn + foliar application in alkaline soils with limited Zn availability is crucial for improving wheat yield and grain quality.


Subject(s)
Soil , Zinc , Zinc/analysis , Triticum , Zinc Sulfate/metabolism , Edible Grain/chemistry
18.
J Cancer Res Clin Oncol ; 149(19): 17451-17466, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37889309

ABSTRACT

BACKGROUND: Cuproptosis was defined as a novel nonapoptotic cell death pathway and its potential function in clear cell renal cell carcinoma (ccRCC) remains unclear. METHODS: We obtained gene expression profiles, somatic mutation and corresponding clinical information of 881 ccRCC samples from 3 cohorts including the cancer genome atlas cohort, GSE29609 cohort and CheckMate 025 cohort. As described in the latest published article, we enrolled 16 genes as cuproptosis-related genes (CRGs). We explored the expression level, variants and copy number variation of the CRGs. Univariate and multi-variate regression were utilized to assess the prognostic significance of the CRGs. Non-negative matrix factorization was used to identify potential subgroup and gene set variation analysis was used to explore the potential biological functions. CIBERSORT, ESTIMATE algorithm and single sample gene set enrichment analysis were used to evaluate the tumor microenvironment. In vitro experiments including CCK-8, transwell and wound healing assays were utilized to explore the potential biological function of DLAT in ccRCC. RESULTS: We found that except for CDKN2A, the CRGs were positively associated with patients' OS. Cuproptosis cluster, cuproptosis gene cluster and cuproptosis score were established, respectively, and higher cuproptosis score was significantly associated with a worse OS in ccRCC (p < 0.001). The area under the receiver operating characteristic curve of the cuproptosis-related nomogram at 1 year, 3 years, 5 years was 0.858, 0.821 and 0.78, respectively. In addition, we found that the cuproptosis score was positively associated with PDCD1, CTLA4 expression level, thus the cuproptosis score may also reflect the dysfunction of tumor infiltrating immune cells. In vitro experiments indicated that overexpression of DLAT could inhibited the migration and proliferation ability of ccRCC cells. CONCLUSION: Our findings identify a novel cuproptosis-related signature and the cuproptosis characteristics may influence the anti-tumor immunity though complex regulating networks, and thus cuproptosis may play a role in developing novel therapeutic target of ccRCC.


Subject(s)
Apoptosis , Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Computational Biology , DNA Copy Number Variations , Kidney Neoplasms/genetics , Tumor Microenvironment , Copper
19.
Int J Biol Sci ; 19(14): 4552-4570, 2023.
Article in English | MEDLINE | ID: mdl-37781030

ABSTRACT

Background: Clear cell renal cell carcinoma (ccRCC) is an aggressive urological cancer that originates from the proximal tubular epithelium. As one of the most common post-translational modification, protein arginine methylation plays a pivotal role in various cancer-associated biological functions, especially in cancer immunity. Therefore, constructing a protein arginine methylation-related prognostic signature would be beneficial in guiding better personalized clinical management for patients with ccRCC. Methods: Based on the multi-omics profiling of the expression levels of eight protein arginine methyltransferases (PRMTs) in 763 ccRCC samples (from TCGA, CPTAC, EMBL, and ICGC databases), we established a scoring system with machine-learning algorithms to quantify the modification patterns on clinical and immunological characterizations of individual ccRCC patient, which was termed as PRMTScore. Moreover, we utilized two external clinical cohorts receiving immunotherapy (n=302) to validate the reliability of the PRMTScore system. Multiplex immunohistochemistry (mIHC) was performed to characterize the cellular composition of 30 paired ccRCC samples. The proteomic profiling of 232 ccRCC samples obtained from Fudan University Shanghai Cancer Center (FUSCC) was analyzed to validate the protein expression of PRMT5 in ccRCC. Finally, CCK-8, transwell, and wound healing assays were conducted to elucidate the role of PRMT5 in ccRCC in vitro. Results: A total of 763 ccRCC patients with available multi-omics profiling were stratified into two clusters (PRMTCluster A and B) with distinctive prognosis, genomic alterations, tumor microenvironment (TME) characteristics, and fundamental biological mechanisms. Subsequently, protein arginine methylation-related prognostic signature (PRMTScore) was constructed and consisted of SLC16A12, HRH2, F2RL3, and SAA1. The PRMTScore showed remarkable differences in outcomes, immune and stromal fractions, expressions of immune checkpoints, the abundance of immune cells, and immunotherapy response in ccRCC patients. Additionally, preliminary insights unveiled the tumor-suppressive role of PRMT5 in ccRCC, and the signal of PRMT5low significantly predicted aggressive prognosis and the high abundance of PD1+ CD8+ cells in ccRCC. Conclusion: We constructed a PRMTScore system, which showed the potent ability to assess the prognosis, TME characteristics, and immunotherapy response for patients with ccRCC. Moreover, this is the first study to propose that PRMT5 acts as a cancer suppressor in ccRCC.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Tumor Microenvironment , Humans , Arginine , Carcinoma/genetics , Carcinoma, Renal Cell/genetics , China , Kidney Neoplasms/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Proteomics , Reproducibility of Results , Tumor Microenvironment/genetics
20.
Biotechnol Lett ; 45(11-12): 1513-1520, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864746

ABSTRACT

Selenite biotransformation by microorganisms is an effective detoxification and assimilation process. However, current knowledge of the molecular mechanisms of selenite reduction remains circumscribed. Here, the reduction of Se(IV) by a highly selenite-resistant Bacillus sp. SL (up to 50 mM) was systematically analyzed, and the molecular mechanisms of selenite reduction were investigated. Remarkably, 10 mM selenite was entirely transformed by the strain SL within 20 h, demonstrating a faster conversion rate compared to other microorganisms. Furthermore, glutathione (GSH) and exopolysaccharides (EPS) changes were also monitored during the process. Transcriptomic analysis revealed that the genes of ferredoxin-sulfite oxidoreductase (6.82) and sulfate adenylyltransferase (6.32) were significantly upregulated, indicating that the sulfur assimilation pathway is the primary reducing pathway involved in selenite reduction by strain SL. Moreover, key genes associated with NAD(P)/FAD-dependent oxidoreductases and thioredoxin were significantly upregulated. The reduction of Se(IV) was mediated by multiple pathways in strain SL. To our knowledge, this is the initial report to identify the involvement of sulfur assimilation pathway in selenite reduction for bacillus, which is rare in aerobic bacteria.


Subject(s)
Bacillus , Selenious Acid , Selenious Acid/metabolism , Bacillus/genetics , Bacillus/metabolism , Transcriptome/genetics , Oxidation-Reduction , Oxidoreductases/metabolism , Sodium Selenite/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...