Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Science ; 382(6671): 684-691, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37943922

ABSTRACT

Passive daytime radiative cooling materials could reduce the energy needed for building cooling up to 60% by reflecting sunlight and emitting long-wave infrared (LWIR) radiation into the cold Universe (~3 kelvin). However, developing passive cooling structures that are both practical to manufacture and apply while also displaying long-term environmental stability is challenging. We developed a randomized photonic composite consisting of a microporous glass framework that features selective LWIR emission along with relatively high solar reflectance and aluminum oxide particles that strongly scatter sunlight and prevent densification of the porous structure during manufacturing. This microporous glass coating enables a temperature drop of ~3.5° and 4°C even under high-humidity conditions (up to 80%) during midday and nighttime, respectively. This radiative "cooling glass" coating maintains high solar reflectance even when exposed to harsh conditions, including water, ultraviolet radiation, soiling, and high temperatures.

2.
Opt Express ; 31(8): 13357-13365, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157474

ABSTRACT

The ability to manipulate thermal emission is paramount to the advancement of a wide variety of fields such as thermal management, sensing and thermophotovoltaics. In this work, we propose a microphotonic lens for achieving temperature-switchable self-focused thermal emission. By utilizing the coupling between isotropic localized resonators and the phase change properties of VO2, we design a lens that selectively emits focused radiation at a wavelength of 4 µm when operated above the phase transition temperature of VO2. Through direct calculation of thermal emission, we show that our lens produces a clear focal spot at the designed focal length above the phase transition of VO2 while emitting a maximum relative focal plane intensity that is 330 times lower below it. Such microphotonic devices capable of producing temperature-dependent focused thermal emission could benefit several applications such as thermal management and thermophotovoltaics while paving the way for next-generation contact-free sensing and on-chip infrared communication.

3.
ACS Nano ; 15(12): 19917-19923, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34860001

ABSTRACT

The ability to control the propagation direction of light has long been a scientific goal. However, the fabrication of large-scale optical angular-range selective films is still a challenge. This paper presents a polymer-enabled large-scale fabrication method for broadband angular-range selective films that perform over the entire visible spectrum. Our approach involves stacking together multiple one-dimensional photonic crystals with various engineered periodicities to enlarge the bandgap across a wide spectral range based on theoretical predictions. Experimental results demonstrate that our method can achieve broadband transparency at a range of incident angles centered around normal incidence and reflectivity at larger viewing angles, doing so at large scale and low cost.

4.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33790008

ABSTRACT

A radiative vapor condenser sheds heat in the form of infrared radiation and cools itself to below the ambient air temperature to produce liquid water from vapor. This effect has been known for centuries, and is exploited by some insects to survive in dry deserts. Humans have also been using radiative condensation for dew collection. However, all existing radiative vapor condensers must operate during the nighttime. Here, we develop daytime radiative condensers that continue to operate 24 h a day. These daytime radiative condensers can produce water from vapor under direct sunlight, without active consumption of energy. Combined with traditional passive cooling via convection and conduction, radiative cooling can substantially increase the performance of passive vapor condensation, which can be used for passive water extraction and purification technologies.

5.
Sci Bull (Beijing) ; 65(14): 1177-1183, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-36659147

ABSTRACT

Artificial neural networks have dramatically improved the performance of many machine-learning applications such as image recognition and natural language processing. However, the electronic hardware implementations of the above-mentioned tasks are facing performance ceiling because Moore's Law is slowing down. In this article, we propose an optical neural network architecture based on optical scattering units to implement deep learning tasks with fast speed, low power consumption and small footprint. The optical scattering units allow light to scatter back and forward within a small region and can be optimized through an inverse design method. The optical scattering units can implement high-precision stochastic matrix multiplication with mean squared error <10-4 and a mere 4 × 4 µm2 footprint. Furthermore, an optical neural network framework based on optical scattering units is constructed by introducing "Kernel Matrix", which can achieve 97.1% accuracy on the classic image classification dataset MNIST.

6.
Nat Commun ; 10(1): 396, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30674900

ABSTRACT

High-index dielectric nanoparticles supporting a distinct series of Mie resonances have enabled a new class of optical antennas with unprecedented functionalities. The great wealth of multipolar responses has not only brought in new physical insight but also spurred practical applications. However, how to make such a colorful resonance palette actively tunable is still elusive. Here, we demonstrate that the structured phase-change alloy Ge2Sb2Te5 (GST) can support a diverse set of multipolar Mie resonances with active tunability. By harnessing the dramatic optical contrast of GST, we realize broadband (Δλ/λ ~ 15%) mode shifting between an electric dipole resonance and an anapole state. Active control of higher-order anapoles and multimodal tuning are also investigated, which make the structured GST serve as a multispectral optical switch with high extinction contrasts (>6 dB). With all these findings, our study provides a new direction for realizing active nanophotonic devices.

7.
Opt Lett ; 43(6): 1295-1298, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29543275

ABSTRACT

Polar crystals can enable strong light-matter interaction at an infrared regime and provide many practical applications including thermal emission. However, the dynamic control of thermal emission based on polar crystals remains elusive as the lattice vibrations are solely determined by the crystal structure. Here, a nonvolatile tunable midinfrared thermal emitter enabled by a phase-changing film Ge2Sb2Te5 on silicon carbide polar crystal is demonstrated. By controlling the state of Ge2Sb2Te5 from an amorphous to a crystalline state, the emissivity of the thermal emitter is tuned from a low value to near unity with a maximum change in peak emissivity exceeding 10 dB over the Reststrahlen band of SiC (11.4 µm to 12.3 µm). This nonvolatile tunable thermal emitter, which presents a lot of advantages in terms of tunability, zero static power, angular insensitivity, and ease of fabrication, can be potentially applied for light sources, infrared camouflage, and radiative cooling devices.

8.
Nanoscale ; 10(9): 4415-4420, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29451573

ABSTRACT

The ability to continuously tune the emission wavelength of mid-infrared thermal emitters while maintaining high peak emissivity remains a challenge. By incorporating the nonvolatile phase changing material Ge2Sb2Te5 (GST), two different kinds of wavelength-tunable mid-infrared thermal emitters based on simple layered structures (GST-Al bilayer and Cr-GST-Au trilayer) are demonstrated. Aiming at high peak emissivity at a tunable wavelength, an Al film and an ultrathin (∼5 nm) top Cr film are adopted for these two structures, respectively. The gradual phase transition of GST provides a tunable peak wavelength between 7 µm and 13 µm while high peak emissivity (>0.75 and >0.63 for the GST-Al and Cr-GST-Au emitters, respectively) is maintained. This study shows the capability of controlling the thermal emission wavelength, the application of which may be extended to gas sensors, infrared imaging, solar thermophotovoltaics, and radiative coolers.

9.
Opt Express ; 26(4): 4279-4287, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29475279

ABSTRACT

Thermal emission control has been attracting increased attention in both fundamental science and many applications including infrared sensing, radiative cooling and thermophotovoltaics. In this paper, a tunable dual-band thermal emitter including phase-changing material Ge2Sb2Te5 (GST) is experimentally demonstrated. Two emission peak wavelengths are at 7.36 µm and 5.40 µm at amorphous phase, and can be continuously tuned to 10.01 µm and 7.56 µm while GST is tuned to crystalline phase. Compared with other dual-band metamaterial emitters, this tunable dual-band thermal emitter is only composed of an array of single-sized GST nanodisks (on a gold film), which can greatly simplify the design and manufacturing process, and pave the way towards dynamical thermal emission control.

10.
Light Sci Appl ; 7: 26, 2018.
Article in English | MEDLINE | ID: mdl-30839556

ABSTRACT

Camouflage technology has attracted growing interest for many thermal applications. Previous experimental demonstrations of thermal camouflage technology have not adequately explored the ability to continuously camouflage objects either at varying background temperatures or for wide observation angles. In this study, a thermal camouflage device incorporating the phase-changing material Ge2Sb2Te5 (GST) is experimentally demonstrated. It has been shown that near-perfect thermal camouflage can be continuously achieved for background temperatures ranging from 30 °C to 50 °C by tuning the emissivity of the device, which is attained by controlling the GST phase change. The thermal camouflage is robust when the observation angle is changed from 0° to 60°. This demonstration paves the way toward dynamic thermal emission control both within the scientific field and for practical applications in thermal information.

SELECTION OF CITATIONS
SEARCH DETAIL
...