Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893828

ABSTRACT

Bioinspired structural color represents a burgeoning field that draws upon principles, strategies, and concepts derived from biological systems to inspire the design of novel technologies or products featuring reversible color changing mechanisms, with significant potential applications for camouflage, sensors, anticounterfeiting, etc. This mini-review focuses specifically on the research progress of bioinspired structural color in the realm of camouflage. Firstly, it discusses fundamental mechanisms of coloration in biological systems, encompassing pigmentation, structural coloration, fluorescence, and bioluminescence. Subsequently, it delineates three modulation strategies-namely, photonic crystals, film interference, and plasmonic modulation-that contribute to the development of bioinspired structural color materials or devices. Moreover, the review critically assesses the integration of bioinspired structural color materials with environmental contexts, with a particular emphasis on their application in camouflage. Finally, the paper outlines persisting challenges and suggests future development trends in the camouflage field via bioinspired structural color.

2.
Chem Asian J ; : e202400357, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837322

ABSTRACT

Cyclotriphosphazene (CP) is a cyclic inorganic compound with the chemical formula (NPCl2)3. This unique molecule consists of a six-membered ring composed of alternating nitrogen and phosphorus atoms, each bonded to two chlorine atoms. CP exhibits remarkable versatility and significance in the realm of materials chemistry due to its easy functionalization via facile nucleophilic substitution reactions in mild conditions as well as intriguing properties of resultant final CP-based molecules or polymers. CP has been served as an important building block for numerous functional materials. This review provides a general and broad overview of the synthesis of CP-based small molecules through nucleophilic substitution of hexachlorocyclotriphosphazene (HCCP), and their applications, including flame retardants, liquid crystals (LC), chemosensors, electronics, biomedical materials, and lubricants, have been summarized and discussed. It would be expected that this review would offer a timely summary of various CP-based materials and hence give an insight into further exploration of CP-based molecules in the future.

3.
Angew Chem Int Ed Engl ; 62(10): e202215728, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36588090

ABSTRACT

Layered double hydroxides (LDHs), whose formation is strongly related to OH- concentration, have attracted significant interest in various fields. However, the effect of the real-time change of OH- concentration on LDHs' formation has not been fully explored due to the unsuitability of the existing synthesis methods for in situ characterization. Here, the deliberately designed combination of NH3 gas diffusion and in situ pH measurement provides a solution to the above problem. The obtained results revealed the formation mechanism and also guided us to synthesize a library of LDHs with the desired attributes in water at room temperature without using any additives. After evaluating their oxygen evolution reaction performance, we found that FeNi-LDH with a Fe/Ni ratio of 25/75 exhibits one of the best performances so far reported.

4.
ACS Omega ; 5(22): 12825-12831, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32548466

ABSTRACT

Frost weathering of porous materials caused by seasonal temperature changes is a major source of damage to the world's infrastructure and cultural heritage. Here we investigate poly(vinyl alcohol) (PVA) addition as a means to enhance the freeze-thaw durability of concrete without compromising its structural or mechanical integrity. We evaluate the ice recrystallization inhibition activity of PVA in a cementitious environment and the impact of PVA on key structural and mechanical properties, such as cement hydration (products), microstructure, strength, as well as freeze-thaw resistance. We find that a low amount of PVA significantly reduces the surface scaling of concrete and displays excellent ice recrystallization inhibition in the saturated Ca(OH)2 solution, which has a similar pH value as cement pore solution, while it does not affect cement hydration, microstructure, nor its mechanical properties. These findings contribute to new insights on the freeze-thaw damage mechanism, and more importantly, we disclose a new direction for the design of concrete with excellent freeze-thaw resistance.

5.
Materials (Basel) ; 9(3)2016 Feb 25.
Article in English | MEDLINE | ID: mdl-28773254

ABSTRACT

In the present study, BiVO4 sample was prepared under different pH 0.5-13 without capping agent. Different morphology characteristics were observed, such as sheet crystal structure, cross crystal structure and branching crystal structure. The mechanism of the formation of BiVO4 nanostructure was discussed. Under acid condition, sheet crystal structure was obtained. The phenomenon could be attributed to polymerization of vanadate in the presence of H⁺. In the weak alkaline solution, across structure and branching type morphology was obtained. The photocatalytic efficiency for the samples ranked as pH 5 > pH 3 > pH 7 > pH 9 > pH 1 > pH 11 > pH 13 > blank, which is in good agreement with X-ray diffraction (XRD) result. E. coli envelop was damaged in the presence of BiVO4 under visible light. The protrusion on envelop was diminished by BiVO4. Attenuated Total Reflection Fourier transformed Infrared Spectroscopy (ATR-FTIR) results suggested the intensity was weakened for the amide, phosphoric, -COO- group and C-H bond in lipopolysaccharides (LPS), peptidoglycan and periplasm molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...