Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 365: 121506, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38901319

ABSTRACT

Straw biochar is a commonly recognized agricultural amendment that can improve soil quality and reduce carbon emissions while sequestering soil carbon. However, the mechanisms underlying biochar's effects on annual soil carbon emissions in seasonally frozen soil areas and intrinsic drivers have not been clarified. Here, a 2-y field experiment was conducted to investigate the effects of different biochar dosages (0, 15, and 30, t ha-1; B0 (CK), B15, and B30, respectively) on carbon emissions (CO2 and CH4) microbial colony count, and soil-environment factors. The study period was the full annual cycle, including the freeze-thaw period (FTP) and the crop growth period (CP). Structural equation modeling (SEM) was developed to reveal the key drivers and potential mechanisms of biochar on carbon emissions. Biochar application reduced soil carbon emissions, with the reduction rate positively related to the biochar application rate (B30 best). During FTP, the reduction rate was 11.5% for CO2 and 48.2% for CH4. During CP, the reduction rate was 17.9% for CO2 and 34.5% for CH4. Overall, compared with CK, B30 treatment had a significant effect on reducing total soil carbon emissions (P < 0.05), with an average decrease of 16.7% during the two-year test period. The study also showed that for soils with continuous annual cycles (FTP and CP), carbon emissions were best observed from 10:00-13:00. After two years of freeze-thaw cycling, biochar continued to improve soil physical and chemical properties, thereby increasing soil microbial colony count. Compared with B0, the B30 treatment significantly increased the total colony count by 74.3% and 263.8% during FTP and CP (P < 0.05). Structural equation modeling (SEM) indicated that, with or without biochar application, the soil physicochemical properties directly or indirectly affected soil CO2 and CH4 emission fluxes through microbial colony count. The total effects of biochar application on CO2 emission fluxes were 0.50 (P < 0.05) and 0.64 (P < 0.01), respectively, but there was no significant effect on CH4 emission fluxes (P > 0.05). Among them, soil water content (SWC), soil temperature (ST) and soil organic carbon (SOC) were the main environmental determinants of CO2 emission fluxes during the FTP and CP. The total effects were 0.57, 0.65, and 0.53, respectively. For CH4, SWC, soil salinity (SS) and actinomycete colony count were the main environmental factors affecting its emission. The total effects were 0.50, 0.45, 0.44, respectively. For freeze-thaw alternating soils, the application of biochar is a feasible option for addressing climate change through soil carbon sequestration and greenhouse gas emissions mitigation. Soil water-heat-salt-fertilization and microbial communities are important for soil carbon emissions as the reaction matrix and main participants of soil carbon and nitrogen biochemical transformation.

2.
Huan Jing Ke Xue ; 45(5): 3088-3097, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629569

ABSTRACT

Mulching to conserve moisture has become an important agronomic practice in saline soil cultivation, and the effects of the dual stress of salinity and microplastics on soil microbes are receiving increasing attention. In order to investigate the effect of polyethylene microplastics on the microbial community of salinized soils, this study investigated the effects of different types (chloride and sulphate) and concentrations (weak, medium, and strong) of polyethylene (PE) microplastics (1% and 4% of the dry weight mass of the soil sample) on the soil microbial community by simulating microplastic contamination in salinized soil environments indoors. The results showed that:PE microplastics reduced the diversity and abundance of microbial communities in salinized soils and were more strongly affected by sulphate saline soil treatments. The relative abundance of each group of bacteria was more strongly changed in the sulphate saline soil treatment than in the chloride saline soil treatment. At the phylum level, the relative abundance of Proteobacteria was positively correlated with the abundance of fugitive PE microplastics, whereas the relative abundances of Bacteroidota, Actinobacteriota, and Acidobacteria were negatively correlated with the abundance of fugitive PE microplastics. At the family level, the relative abundances of Flavobacteriaceae, Alcanivoracaceae, Halomonadaceae, and Sphingomonasceae increased with increasing abundance of PE microplastics. The KEGG metabolic pathway prediction showed that the relative abundance of microbial metabolism and genetic information functions were reduced by the presence of PE microplastics, and the inhibition of metabolic functions was stronger in sulphate saline soils than in chloride saline soils, whereas the inhibition of genetic information functions was weaker than that in chloride saline soils. The secondary metabolic pathways of amino acid metabolism, carbohydrate metabolism, and energy metabolism were inhibited. It was hypothesized that the reduction in metabolic functions may have been caused by the reduced relative abundance of the above-mentioned secondary metabolic pathways. This study may provide a theoretical basis for the study of the effects of microplastics and salinization on the soil environment under the dual pollution conditions.


Subject(s)
Microplastics , Polyethylene , Plastics , Soil , Chlorides , Halogens , Sulfates , Soil Microbiology
3.
J Environ Manage ; 351: 119979, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181682

ABSTRACT

Biochar is widely recognized as a soil amendment to reduce greenhouse gas emissions and enhance soil carbon storage in agroecosystems; however, the systematic focus on carbon balance and ecological benefits in cropping systems remains unclear in saline-alkali areas under water-saving irrigation. Here, a 2-yr field experiment with carbon footprint method was conducted to determine soil carbon budgets, biochar carbon efficiency performance, and the economic and ecological benefits of mulched drip-irrigated sorghum production, in an arid salinized region of Inner Mongolia, China. Corn straw-derived biochar dosages of 0 (CK), 15 (B15), 30 (B30), and 45 (B45) t hm-2 were just applied into the soil in the first crop growing season. A single application of biochar to soil significantly reduced CO2 emissions for the current and subsequent crop-growing seasons, with 13.1%, 16.7%, and 12.5% reductions for B15, B30, and B45, respectively. Compared with the non-biochar control plots, B15, B30, and B45 also increased NPP by 36.7%, 38.4%, and 27.1%, respectively. The actual effects on improving net carbon sequestration for B15, B30, and B45 in the first year were higher than those in the second year, with mean increases of 1.27, 1.47, and 1.36 times, respectively; however, the efficiencies of biochar for fixing carbon per biochar dosage input for B15 were 72.8% and 64.1% higher than those of B30 and B45, respectively. Net profits were significantly improved by 57.2-87.1% by biochar treatments. The environmental benefits of biochar carbon trading revenues for B15, B30, and B45 increased by 105.9%, 162.1%, and 109.6%, respectively. The minimum observation for carbon productivity and the maximum measurements for both the economic and ecological benefits were B15. The B15 also significantly increased sorghum yield and grain number. Results demonstrate that biochar application in the current growing season helps reduce soil carbon emissions, increases net carbon sequestration for current and subsequent sorghum agroecosystems, and enhances net profit and ecological benefits. The optimal positive synergistic effect was observed at a biochar application rate of 15 t hm-2 for reducing soil carbon emissions, increasing crop production, and improving the ecological environment.


Subject(s)
Oryza , Sorghum , Agriculture/methods , Farms , Alkalies , Carbon Sequestration , Charcoal , Carbon/analysis , Soil , China
4.
Huan Jing Ke Xue ; 44(10): 5832-5841, 2023 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-37827798

ABSTRACT

To explore the effect of biochar on greenhouse gas emissions and the carbon footprint of a corn farmland ecosystem under drip irrigation with film in an arid region, biochar treatments with different application rates[0 (CK), 15 (C15), 30 (C30), and 45 t·hm-2 (C45)] were established. The seasonal changes in soil greenhouse gases (CO2, N2O, and CH4) and their comprehensive warming potential in the maize farmland ecosystem were monitored for two consecutive years after a one-time application of biochar. The carbon emissions caused by agricultural production activities and their carbon footprint were estimated using the life cycle assessment method. Compared with that in CK, the cumulative CO2 emissions in the crop growing season decreased by 17.6%-24.7%, the cumulative N2O emissions decreased by 71.1%-110.4%, and the global warming potential decreased by 19.5%-25.9%. In the second year of the crop growing season after biochar application, the cumulative CO2 emissions were reduced by 19.2%-40.6%, the cumulative N2O emissions were reduced by 38.7-46.7%, and the comprehensive warming potential was reduced by 19.7%-40.5%. For two consecutive years, the treatment of C15 and C30 increased the cumulative absorption of CH4 to different degrees, whereas the treatment of C45 significantly decreased the cumulative absorption of CH4. C15 and C45 were the treatments with the least carbon footprint per unit yield in the current and the succeeding year of biochar application, and their carbon footprint per unit yield was 10.1% and 26.2% lower than that of CK, respectively. Soil greenhouse gas emissions showed the most contribution to the carbon footprint of the maize farmland ecosystem (38.1%-59.2%), followed by nitrogen fertilizer production (19.8%-33.4%), electric energy production (6.7%-8.8%), and plastic film mulching (4.4%-7.4%). Biochar contributed 5.7%-13.8% to the ecosystem's carbon footprint. The application of 30 t·hm-2 biochar had a better effect on carbon reduction, carbon fixation, and yield increase in the farmland ecosystem. Improving the biochar production process and transportation route, increasing nitrogen use efficiency, and developing water-saving and energy-saving irrigation technology are important ways to reduce the carbon footprint of farmland ecosystems in arid regions.


Subject(s)
Greenhouse Gases , Zea mays , Greenhouse Gases/analysis , Farms , Ecosystem , Carbon Footprint , Carbon Dioxide/analysis , Nitrous Oxide/analysis , Methane/analysis , Agriculture/methods , Soil , Carbon/analysis , Nitrogen
5.
Front Plant Sci ; 13: 1006827, 2022.
Article in English | MEDLINE | ID: mdl-36438135

ABSTRACT

The improvement of soil water and nutrient availability through soil management practices are crucial in promoting crop growth and obtaining high water-fertilizer productivity under limited irrigation. In this study, a 2×4 fully randomized factorial design with two drip-irrigation regimes and four biochar rates was performed during maize crop growing seasons for a semiarid region of China in 2015 and 2016. Irrigation regimes was applied on the basis of the water lower limit of -15 kPa soil matric potential as W15 and -35 kPa as W35. Maize straw-derived biochar application rate of 0 (B0), 15 (B15), 30 (B30), and 45 (B45) t ha-1 was once applied to sandy loam soil in the first growing season. Our results showed that the W15 and W35 regimes generally increased soil nutrient availability and organic matter content under all biochar treatment rates for the entire growth period. In comparison, the B45-induced increase in available P and K was higher in the W15 regime than in the W35 regime during the second growing season. Furthermore, biochar treatment improved the comprehensive fertility index (CFI), leaf area index, and yield of maize. Within the same biochar treatment, the CFI value was higher in the W15 regime than in the W35 regime during the first growing season. However, the opposite was observed in the second growing season. The average irrigation water productivity (IWP) increased by 11.6%, 8.8%, and 7.8% in the W35 regime and by 15.2%, 12.9%, and 10.2% in the W15 regime for the B15, B30, and B45 treatments, respectively. Moreover, biochar treatment enhanced maize grain yield and partial fertilizer productivity (PFP) of synthetic N, P, and K fertilizers under both irrigation regimes. The highest PFP values were observed in the B15 treatment under W15. In general, a one-time application of biochar treatment at a rate of 15 t ha-1 in the first growing season is recommended in terms of increasing the availability of N, P, K, and organic matter in sandy loam and also improve water-fertilizer productivity under irrigation water lower limit of -15 kPa soil matric potential.

6.
Materials (Basel) ; 15(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36013822

ABSTRACT

Stainless steel core panel is a novel structure for fast modular building, but its brazing foils are susceptible to defects due to the difficulty of precisely controlling the brazing process. An automated, nondestructive testing technique is highly desirable for quick inspection of the brazing defects buried in the stainless-steel core panel. In this paper, pulsed eddy current testing (PECT) was employed to inspect local incomplete brazing defects. Finite element simulation and experiment verification were conducted to investigate the feasibility and effectiveness of the proposed method. The peak value of the PECT signal was found to be sensitive to the presence of the defect. With the aid of an industrial robotic arm, line and two-dimensional scans were performed of the PECT probe above the panel specimen. The prefabricated incomplete brazing foil was successfully imaged as a notched ring, whose opening coincides with the physical length of the missing brazing. The proposed method shows potential to serve as an effective tool for in-line or off-line automated nondestructive testing of the brazing defects in stainless steel core panels.

7.
J Environ Manage ; 286: 112198, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33621846

ABSTRACT

There are global concerns regarding soil remediation and water conservation in arid and semi-arid areas. Studying the mechanism and factors influencing soil structure and organic matter content is very important for soil remediation and the rational utilization of water resources. We tracked the changes in soil aggregates and organic matter content during the growth period of maize using different application rates of straw biochar (10, 20, 30, and 50 t/ha) to investigate the effects of biochar on the structure of weakly alkaline soil. The results were as follows: 1) Biochar significantly increased the content of water-stable soil aggregates. The content of water-stable macroaggregates (≥0.25 mm) increased by 8.3-35.0%, and the increase was the highest (35%) when biochar was applied at a rate of 30 t/ha 2) After applying biochar, the content of air-dried aggregates on the surface layer increased by 112.6-168.5%. 3). Biochar increased the organic matter content to varying degrees from the spatiotemporal aspect. In terms of soil depth, organic matter content increased by 2.15-5.88 g/kg. The jointing stage, which the time demand for organic matter is the highest, organic matter content increased by 35.4% when biochar was applied at 50 t/ha 4) We established a three-dimensional surface correlation equation based on the synergistic relationships among biochar, water-stable aggregates, and organic matter content. The particle size of soil aggregates was the highest when the biochar application rate was 29.38 t/ha and the organic matter content increased by 25.7%. It provided evidence that applies to biochar has good potential for water-saving irrigation and soil remediation.


Subject(s)
Charcoal , Soil , Water , Zea mays
8.
J Environ Manage ; 277: 111331, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32949951

ABSTRACT

Straw biochar could improve the water holding capacity effectivity of salinized soil, increase soil fertili, enhance crop yield, reduce greenhouse gas emission, and mitigate climate change. The mechanism of using straw biochar for soil improvement is different under various climate and soil texture conditions. To explore the mechanism of using straw biochar to improve soil and its influence on crop yield in the typical arid and semi-arid, a large temperature difference between day and night, soil temperature at different depths, and physiological changes and crop yield of maize at different growth stages were studied. It is assumed that straw biochar can improve the properties of salinized soil including physicochemical indexes, and crop physiological index, stimulates the positive circulation between soil, vegetation, and microorganisms, and plays a role in improving soil quality. The results showed that biochar application increased the average soil temperature (T) by 2 °C and reduced day-night T differences. Application of 30 t/ha biochar increased the average maize leaf T by 2.2 °C and photosynthetic rate by 16.5%. Furthermore, the average transpiration rate doubled compared to control, and the chlorophyll value increased by 21%. The application of biochar improved the utilization rate of nitrogen fertilizer by enhancing ammonification. Biochar application caused a maximum overall yield increase of 11.9% compared to control treatment (CK). Therefore, these results provide a practical basis for improving weakly alkaline farmland soils in arid and semi-arid areas, and provide an effective method to potentially mitigate the environmental crisis and promote sustainable development in agriculture.


Subject(s)
Soil , Zea mays , Agriculture , Charcoal , Nitrogen/analysis , Temperature
9.
Sci Total Environ ; 729: 138752, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32498160

ABSTRACT

Biochar is widely used as a soil amendment to challenge climate change through restraining greenhouse gas production and increasing soil C sink in cropland soils, yet its effect was not studied well under drip irrigation with mulch. A two-year field experiment was conducted to investigate the impact of corn residue-derived biochar amendments on greenhouse gases (GHG), soil organic carbon (SOC), and global warming potential (GWP) on sandy loam soil in Inner Mongolia, China. Biochar application rates of 0 (B0, control), 15 (B15), 30 (B30), and 45 (B45) t ha-1 were broadcasted onto the soil surface, and then mixed into 30-cm soil depth at the first crop growing season to a film-mulched and drip-irrigated corn production. Soil emissions of CO2, N2O, and CH4 were measured using a closed static chamber approach. Compared to control plots, biochar amendments reduced total CO2 emission by 18-25% at the first growing season, and 19-41% at the second growing season. The highest and lowest CH4 emissions were from B45 and B15 in the first year, and B45 and B30 in the second year, respectively. Relative to the control, B15 and B30 reduced CH4 emission by 124% and 132% as averaged over 2-yr. With biochar amendments, total N2O emission was decreased by 71-110% and 39-47% in the first and second year. Among these biochar amendments, B30 was the best amendment limiting the GWP of N2O and CH4 in any of the two years. B30 and B45 significantly increased SOC sequestration in the top 15-cm depth by 19% and 37% in the first growing season, respectively, and by 12% and 15% in the second growing season. Biochar amendment B30 also significantly increased corn yields. Biochar shows the greatest potential to mitigate greenhouse gas emissions and increase soil C sequestration. The greatest reductions with biochar application 30 t ha-1 in corn.


Subject(s)
Carbon Sequestration , Carbon , Carbon Dioxide , Charcoal , China , Greenhouse Gases , Methane , Nitrous Oxide , Soil , Zea mays
10.
Sci Rep ; 7: 43122, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28220874

ABSTRACT

Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater.


Subject(s)
Agricultural Irrigation , Groundwater , Models, Biological , Zea mays/physiology , Desert Climate
11.
J Environ Manage ; 91(7): 1511-25, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20236754

ABSTRACT

Wetlands are one of the most important watershed microtopographic features that affect hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models such as the Soil and Water Assessment Tool (SWAT), enhanced by the hydrologic equivalent wetland (HEW) concept developed by Wang [Wang, X., Yang, W., Melesse, A.M., 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 51 (1), 55-72.], can be a best resort. However, there is a serious lack of information about simulated effects using this kind of integrated modeling approach. The objective of this study was to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota. The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10-20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50-80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority while both wetland conservation and restoration may be equally important.


Subject(s)
Conservation of Natural Resources , Environmental Restoration and Remediation , Fresh Water/analysis , Models, Theoretical , Wetlands , Calibration , Computer Simulation , Geologic Sediments/analysis , Manitoba , Minnesota , Nitrogen/analysis , Phosphorus/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...