Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Toxicol Chem ; 37(3): 854-859, 2018 03.
Article in English | MEDLINE | ID: mdl-29077219

ABSTRACT

When oil spills occur, behavior is the first line of defense for a fish to avoid being contaminated. We determined the avoidance threshold of the European seabass (Dicentrarchus labrax) to the water-soluble fraction (WSF) of oil using a dual-flow choice box. The results showed that a plume of 20%-diluted WSF (total polycyclic aromatic hydrocarbon [PAH] concentration: 8.54 µg L-1 ) triggered a significant avoidance response that was detected within 7.5 min of introducing WSF-contaminated water into the experimental setup. However, the ecological relevance of seabass capacity to detect and avoid WSF remains to be established. In the short term, such a response is indeed liable to reduce seabass contact time with oil-contaminated water and thus preserve their functional integrity. In the long term, however, avoidance may contribute to the displacement of a population into a possibly less auspicious environment, with consequences very similar to those of contaminant exposure, that is, disturbed population dynamics and demography. Environ Toxicol Chem 2018;37:854-859. © 2017 SETAC.


Subject(s)
Avoidance Learning/drug effects , Bass/metabolism , Petroleum Pollution/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Animals , Choice Behavior/drug effects , Polycyclic Aromatic Hydrocarbons/analysis , Solubility , Time Factors , Water Pollutants, Chemical/analysis
2.
J Exp Biol ; 220(Pt 10): 1846-1851, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28302867

ABSTRACT

Ocean warming, eutrophication and the consequent decrease in oxygen lead to smaller average fish size. Although such responses are well known in an evolutionary context, involving multiple generations, this appears to be incompatible with current rapid environmental change. Instead, phenotypic plasticity could provide a means for marine fish to cope with rapid environmental changes. However, little is known about the mechanisms underlying plastic responses to environmental conditions that favour small phenotypes. Our aim was to investigate how and why European sea bass that had experienced a short episode of moderate hypoxia during their larval stage subsequently exhibited a growth depression at the juvenile stage compared with the control group. We examined whether energy was used to cover higher costs for maintenance, digestion or activity metabolisms, as a result of differing metabolic rate. The lower growth was not a consequence of lower food intake. We measured several respirometry parameters and we only found a higher specific dynamic action (SDA) duration and lower SDA amplitude in a fish phenotype with lower growth; this phenotype was also associated with a lower protein digestive capacity in the intestine. Our results contribute to the understanding of the observed decrease in growth in response to climate change. They demonstrate that the reduced growth of juvenile fishes as a consequence of an early life hypoxia event was not due to a change of fish aerobic scope but to a specific change in the efficiency of protein digestive functions. The question remains of whether this effect is epigenetic and could be reversible in the offspring.


Subject(s)
Bass/growth & development , Hypoxia/metabolism , Proteolysis , Animals , Basal Metabolism , Bass/metabolism , Bass/physiology , Body Size/physiology , Climate Change , Larva/growth & development , Larva/metabolism , Larva/physiology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL