Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 21(13): 15418-29, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23842329

ABSTRACT

We present the first non-resonant and non-enhanced Raman correlation spectroscopy experiments. They are conducted on a confocal microscope combined with a Raman spectrometer. The thermal fluctuations of the Raman intensities scattered by dispersions of polystyrene particles of sub-micrometric diameters are measured and analysed by deriving the autocorrelation functions (ACFs) of the intensities. We show that for particles of diameter down to 200 nm, RCS measurements are successfully obtained in spite of the absence of any source of amplification of the Raman signal. For particles of diameter ranging from 200 to 750 nm, the ACFs present a time-decay behaviour in accordance with the model of free Brownian particles. For particles of 1000 nm in diameter, the AFCs present a different behaviour with a much smaller characteristic time. This results from the dynamics of a single-Brownian particle trapped in the confocal volume by the optical forces of the focus spot.

2.
Phys Rev Lett ; 109(12): 127601, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-23005986

ABSTRACT

We interpret recent measurements of the zero field muon relaxation rate in the magnetic pyrochlore Dy(2)Ti(2)O(7) as resulting from the quantum diffusion of muons in the material. In this scenario, the plateau observed at low temperature (< 7 K) in the relaxation rate is due to coherent tunneling of muons through a spatially disordered spin state and not to any magnetic fluctuations persisting at low temperature. Two further regimes either side of a maximum relaxation rate at T* = 50 K correspond to a crossover between tunneling and incoherent activated hopping motion of the muon. Our fit of the experimental data is compared with the case of muonium diffusion in KCl.

3.
Phys Rev Lett ; 100(6): 066408, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18352499

ABSTRACT

It is theoretically shown that nanometric silver lamellar gratings present very strong visible light absorption inside the grooves, leading to electric field enhancement of several orders of magnitude. It is due to the excitation of quasistatic surface plasmon polaritons with particular small penetration depth in the metal. This may explain the abnormal optical absorption observed a long time ago on almost flat Ag films. Surface enhanced Raman scattering in rough metallic films could also be due to the excitation of such quasistatic plasmon polaritons in grain boundaries or notches of the films.

4.
Opt Express ; 16(23): 19127-35, 2008 Nov 10.
Article in English | MEDLINE | ID: mdl-19582005

ABSTRACT

We study the light localization on commensurate arrangements of deep metallic sub-wavelength grooves. We theoretically show that as the degree of commensuration tends to an irrational number new light localization states are produced. These have properties close to that reported for hot spots on disordered surfaces and are not permitted for simple period gratings. Existence of these new resonances is experimentally provided in the infra-red region by reflectivity measurements performed on two commensurate samples with respectively two and three slits per period. Manipulations of these hot spots which can be controlled from far-field could be used for high sensitivity spectroscopy applications.


Subject(s)
Metals/chemistry , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Refractometry/methods , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
5.
Phys Rev Lett ; 97(3): 036405, 2006 Jul 21.
Article in English | MEDLINE | ID: mdl-16907524

ABSTRACT

We investigate the optical response of two subwavelength grooves on a metallic screen, separated by a subwavelength distance. We show that the cavity, Fabry-Perot-like mode, already observed in one-dimensional periodic gratings and known for a single slit, splits into two resonances in our system: a symmetric mode with a small Q factor, and an antisymmetric one which leads to a much stronger field enhancement. This behavior results from the near-field coupling of the grooves. Moreover, the use of a second incident wave allows control of the localization of the photons in the groove of our choice, depending on the phase difference between the two incident waves. The system acts exactly as a subwavelength optical switch operated from far field.

SELECTION OF CITATIONS
SEARCH DETAIL
...