Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Nature ; 615(7953): 678-686, 2023 03.
Article in English | MEDLINE | ID: mdl-36922586

ABSTRACT

Dengue is a major health threat and the number of symptomatic infections caused by the four dengue serotypes is estimated to be 96 million1 with annually around 10,000 deaths2. However, no antiviral drugs are available for the treatment or prophylaxis of dengue. We recently described the interaction between non-structural proteins NS3 and NS4B as a promising target for the development of pan-serotype dengue virus (DENV) inhibitors3. Here we present JNJ-1802-a highly potent DENV inhibitor that blocks the NS3-NS4B interaction within the viral replication complex. JNJ-1802 exerts picomolar to low nanomolar in vitro antiviral activity, a high barrier to resistance and potent in vivo efficacy in mice against infection with any of the four DENV serotypes. Finally, we demonstrate that the small-molecule inhibitor JNJ-1802 is highly effective against viral infection with DENV-1 or DENV-2 in non-human primates. JNJ-1802 has successfully completed a phase I first-in-human clinical study in healthy volunteers and was found to be safe and well tolerated4. These findings support the further clinical development of JNJ-1802, a first-in-class antiviral agent against dengue, which is now progressing in clinical studies for the prevention and treatment of dengue.


Subject(s)
Antiviral Agents , Dengue Virus , Dengue , Primates , Viral Nonstructural Proteins , Animals , Humans , Mice , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Clinical Trials, Phase I as Topic , Dengue/drug therapy , Dengue/prevention & control , Dengue/virology , Dengue Virus/classification , Dengue Virus/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Viral , In Vitro Techniques , Molecular Targeted Therapy , Primates/virology , Protein Binding/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Virus Replication
3.
Nature ; 598(7881): 504-509, 2021 10.
Article in English | MEDLINE | ID: mdl-34616043

ABSTRACT

Dengue virus causes approximately 96 million symptomatic infections annually, manifesting as dengue fever or occasionally as severe dengue1,2. There are no antiviral agents available to prevent or treat dengue. Here, we describe a highly potent dengue virus inhibitor (JNJ-A07) that exerts nanomolar to picomolar activity against a panel of 21 clinical isolates that represent the natural genetic diversity of known genotypes and serotypes. The molecule has a high barrier to resistance and prevents the formation of the viral replication complex by blocking the interaction between two viral proteins (NS3 and NS4B), thus revealing a previously undescribed mechanism of antiviral action. JNJ-A07 has a favourable pharmacokinetic profile that results in outstanding efficacy against dengue virus infection in mouse infection models. Delaying start of treatment until peak viraemia results in a rapid and significant reduction in viral load. An analogue is currently in further development.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/classification , Dengue Virus/drug effects , Dengue/virology , Membrane Proteins/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Dengue/drug therapy , Dengue Virus/genetics , Dengue Virus/metabolism , Disease Models, Animal , Female , Male , Membrane Proteins/antagonists & inhibitors , Mice , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , Serine Endopeptidases/metabolism , Viral Load/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Viremia/drug therapy , Viremia/virology , Virus Replication/drug effects
4.
Antiviral Res ; 182: 104883, 2020 10.
Article in English | MEDLINE | ID: mdl-32750467

ABSTRACT

Alphaviruses are arthropod-borne viruses of public health concern. To date no efficient vaccine nor antivirals are available for safe human use. During viral replication the nonstructural protein 1 (nsP1) catalyzes capping of genomic and subgenomic RNAs. The capping reaction is unique to the Alphavirus genus. The whole three-step process follows a particular order: (i) transfer of a methyl group from S-adenosyl methionine (SAM) onto a GTP forming m7GTP; (ii) guanylylation of the enzyme to form a m7GMP-nsP1adduct; (iii) transfer of m7GMP onto 5'-diphosphate RNA to yield capped RNA. Specificities of these reactions designate nsP1 as a promising target for antiviral drug development. In the current study we performed a mutational analysis on two nsP1 positions associated with Sindbis virus (SINV) ribavirin resistance in the Venezuelan equine encephalitis virus (VEEV) context through reverse genetics correlated to enzyme assays using purified recombinant VEEV nsP1 proteins. The results demonstrate that the targeted positions are strongly associated to the regulation of the capping reaction by increasing the affinity between GTP and nsP1. Data also show that in VEEV the S21A substitution, naturally occurring in Chikungunya virus (CHIKV), is a hallmark of ribavirin susceptibility. These findings uncover the specific mechanistic contributions of these residues to nsp1-mediated methyl-transfer and guanylylation reactions.


Subject(s)
Antiviral Agents/pharmacology , Encephalitis Virus, Venezuelan Equine/drug effects , Mutation , RNA Caps/metabolism , Ribavirin/pharmacology , Viral Nonstructural Proteins/genetics , Animals , Chikungunya virus/drug effects , Chikungunya virus/genetics , Chlorocebus aethiops , Drug Resistance, Viral , Encephalitis Virus, Venezuelan Equine/genetics , Vero Cells , Virus Replication/drug effects
5.
Article in English | MEDLINE | ID: mdl-32340991

ABSTRACT

Despite the worldwide reemergence of the chikungunya virus (CHIKV) and the high morbidity associated with CHIKV infections, there is no approved vaccine or antiviral treatment available. Here, we aimed to identify the target of a novel class of CHIKV inhibitors, i.e., the CHVB series. CHVB compounds inhibit the in vitro replication of CHIKV isolates with 50% effective concentrations in the low-micromolar range. A CHVB-resistant variant (CHVBres) was selected that carried two mutations in the gene encoding nsP1 (responsible for viral RNA capping), one mutation in nsP2, and one mutation in nsP3. Reverse genetics studies demonstrated that both nsP1 mutations were necessary and sufficient to achieve ∼18-fold resistance, suggesting that CHVB targets viral mRNA capping. Interestingly, CHVBres was cross-resistant to the previously described CHIKV capping inhibitors from the MADTP series, suggesting they share a similar mechanism of action. In enzymatic assays, CHVB inhibited the methyltransferase and guanylyltransferase activities of alphavirus nsP1 proteins. To conclude, we identified a class of CHIKV inhibitors that targets the viral capping machinery. The potent anti-CHIKV activity makes this chemical scaffold a potential candidate for CHIKV drug development.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Antiviral Agents/pharmacology , Chikungunya Fever/drug therapy , Chikungunya virus/genetics , Chlorocebus aethiops , Vero Cells , Viral Nonstructural Proteins , Virus Replication
6.
Antiviral Res ; 168: 109-113, 2019 08.
Article in English | MEDLINE | ID: mdl-31085207

ABSTRACT

Dengue fever is the most widespread of the human arbovirus diseases, with approximately one third of the world's population at risk of infection. Dengue viruses are members of the genus Flavivirus (family Flaviviridae) and, antigenically, they separate as four closely related serotypes (1-4) that share 60-75% amino acid homology. This genetic diversity complicates the process of antiviral drug discovery. Thus, currently no approved dengue-specific therapeutic treatments are available. With the aim of providing an efficient tool for dengue virus drug discovery, a collection of nineteen dengue viruses, representing the genotypic diversity within the four serotypes, was developed. After phylogenetic analysis of the full-length genomes, we selected relevant strains from the EVAg collection at Aix-Marseille University and completed the virus collection, using a reverse genetic system based on the infectious sub-genomic amplicons technique. Finally, we evaluated this dengue virus collection against three published dengue inhibitory compounds. NITD008, which targets the highly conserved active site of the viral NS5 polymerase enzyme, exhibited similar antiviral potencies against each of the different dengue genotypes in the panel. Compounds targeting less conserved protein subdomains, such as the capsid inhibitor ST-148, or SDM25N, a ∂ opioid receptor antagonist which indirectly targets NS4B, exhibited larger differences in potency against the various genotypes of dengue viruses. These results illustrate the importance of a phylogenetically based dengue virus reference panel for dengue antiviral research. The collection developed in this study, which includes such representative dengue viruses, has been made available to the scientific community through the European Virus Archive to evaluate novel DENV antiviral candidates.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Dengue Virus/genetics , Dengue Virus/classification , Drug Evaluation, Preclinical , Genetic Variation , Genome, Viral/genetics , Genotype , Humans , Phylogeny , Serogroup , Viral Proteins/antagonists & inhibitors , Viral Proteins/genetics
7.
Antiviral Res ; 167: 6-12, 2019 07.
Article in English | MEDLINE | ID: mdl-30849420

ABSTRACT

We report the design, synthesis, and biological evaluation of a class of 1H-pyrido[2,1-b][1,3]benzothiazol-1-ones originated from compound 1, previously identified as anti-flavivirus agent. Some of the new compounds showed activity in low µM range with reasonable selectivity against Dengue 2, Yellow fever (Bolivia strain), and West Nile viruses. One of the most interesting molecules, compound 16, showed broad antiviral activity against additional flaviviruses such as Dengue 1, 3 and 4, Zika, Japanese encephalitis, several strains of Yellow fever, and tick-borne encephalitis viruses. Compound 16 did not exert any effect on alphaviruses and phleboviruses and its activity was maintained in YFV infected cells from different species. The activity of 16 appears specific for flavivirus with respect to other virus families, suggesting, but not proving, that it might be targeting a viral factor. We demonstrated that the antiviral effect of 16 is not related to reduced viral RNA synthesis or virion release. On the contrary, viral particles grown in the presence of 16 showed reduced infectivity, being unable to perform a second round of infection. The chemical class herein presented thus emerges as suitable to provide pan-flavivirus inhibitors.


Subject(s)
Antiviral Agents , Flaviviridae/drug effects , Oxazocines , Pyridines , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Dengue Virus/drug effects , Encephalitis Viruses, Tick-Borne/drug effects , Humans , Oxazocines/chemical synthesis , Oxazocines/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , RNA, Viral/drug effects , Virion/drug effects , Virus Replication/drug effects , West Nile virus/drug effects , Yellow fever virus/drug effects , Zika Virus/drug effects
8.
Antiviral Res ; 163: 59-69, 2019 03.
Article in English | MEDLINE | ID: mdl-30639438

ABSTRACT

Alphaviruses such as the Venezuelan equine encephalitis virus (VEEV) are important human emerging pathogens transmitted by mosquitoes. They possess a unique viral mRNA capping mechanism catalyzed by the viral non-structural protein nsP1, which is essential for virus replication. The alphaviruses capping starts by the methylation of a GTP molecule by the N7-guanine methyltransferase (MTase) activity; nsP1 then forms a covalent link with m7GMP releasing pyrophosphate (GT reaction) and the m7GMP is next transferred onto the 5'-diphosphate end of the viral mRNA to form a cap-0 structure. The cap-0 structure decreases the detection of foreign viral RNAs, prevents RNA degradation by cellular exonucleases, and promotes viral RNA translation into proteins. Additionally, reverse-genetic studies have demonstrated that viruses mutated in nsP1 catalytic residues are both impaired towards replication and attenuated. The nsP1 protein is thus considered an attractive antiviral target for drug discovery. We have previously demonstrated that the guanylylation of VEEV nsP1 can be monitored by Western blot analysis using an antibody recognizing the cap structure. In this study, we developed a high throughput ELISA screening assay to monitor the GT reaction through m7GMP-nsP1 adduct quantitation. This assay was validated using known nsP1 inhibitors before screening 1220 approved compounds. 18 compounds inhibiting the nsP1 guanylylation were identified, and their IC50 determined. Compounds from two series were further characterized and shown to inhibit the nsP1 MTase activity. Conversely, these compounds barely inhibited a cellular MTase demonstrating their specificity towards nsP1. Analogues search and SAR were also initiated to identify the active pharmacophore features. Altogether the results show that this HT enzyme-based assay is a convenient way to select potent and specific hit compounds targeting the viral mRNA capping of Alphaviruses.


Subject(s)
Antiviral Agents/pharmacology , Encephalitis Virus, Venezuelan Equine/drug effects , Encephalitis Virus, Venezuelan Equine/enzymology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Chlorocebus aethiops , Drug Approval , Enzyme-Linked Immunosorbent Assay , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , RNA Caps , Vero Cells , Virus Replication/drug effects
9.
Eur J Med Chem ; 161: 323-333, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30368131

ABSTRACT

No antiviral drugs to treat or prevent life-threatening flavivirus infections such as those caused by mosquito-borne Dengue (DENV) and more recently Zika (ZIKV) viruses are yet available. We aim to develop, through a structure-based drug design approach, novel inhibitors targeting the NS5 AdoMet-dependent mRNA methyltransferase (MTase), a viral protein involved in the RNA capping process essential for flaviviruses replication. Herein, we describe the optimization of a hit (5) identified using fragment-based and structure-guided linking techniques, which binds to a proximal site of the AdoMet binding pocket. X-ray crystallographic structures and computational docking were used to guide our optimization process and lead to compounds 30 and 33 (DENV IC50 = 26 µM and 23 µM; ZIKV IC50 = 28 µM and 19  µM, respectively), two representatives of novel non-nucleoside inhibitors of flavivirus MTases.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Enzyme Inhibitors/pharmacology , Methyltransferases/antagonists & inhibitors , Zika Virus/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Crystallography, X-Ray , Dengue Virus/enzymology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Methyltransferases/metabolism , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Zika Virus/enzymology
10.
ACS Infect Dis ; 4(4): 605-619, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29406692

ABSTRACT

The re-emergence of chikungunya virus (CHIKV) is a serious global health threat. CHIKV is an alphavirus that is transmitted to humans by Aedes mosquitoes; therefore, their wide distribution significantly contributes to the globalization of the disease. Unfortunately, no effective antiviral drugs are available. We have identified a series of 3-aryl-[1,2,3]triazolo[4,5- d]pyrimidin-7(6 H)-ones as selective inhibitors of CHIKV replication. New series of compounds have now been synthesized with the aim to improve their physicochemical properties and to potentiate the inhibitory activity against different CHIKV strains. Among these newly synthesized compounds modified at position 3 of the aryl ring, tetrahydropyranyl and N- t-butylpiperidine carboxamide derivatives have shown to elicit potent antiviral activity against different clinically relevant CHIKV isolates with 50% effective concentration (EC50) values ranging from 0.30 to 4.5 µM in Vero cells, as well as anti-CHIKV activity in human skin fibroblasts (EC50 = 0.1 µM), a clinically relevant cell system for CHIKV infection.


Subject(s)
Antiviral Agents/isolation & purification , Chikungunya virus/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Chemical Phenomena , Chikungunya virus/physiology , Humans , Microbial Sensitivity Tests , Molecular Structure
11.
Eur J Med Chem ; 143: 1667-1676, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29137867

ABSTRACT

Over recent years, many RNA viruses have been "re-discovered", including life-threatening flaviviruses, such as Dengue, Zika, and several encephalitis viruses. Since no specific inhibitors are currently available to treat these infections, there is a pressing need for new therapeutics. Among the flaviviral proteins, NS5 RNA-dependent RNA polymerase (RdRp) represents a validated target being essential for viral replication and it has no human analog. To date, few NS5 RdRp inhibitor chemotypes have been reported and no inhibitors are currently in clinical development. In this context, after an in vitro screening against Dengue 3 NS5 RdRp of our in-house HCV NS5B inhibitors focused library, we found that 2,1-benzothiazine 2,2-dioxides are promising non-nucleoside inhibitors of flaviviral RdRp with compounds 8 and 10 showing IC50 of 0.6 and 0.9 µM, respectively. Preliminary structure-activity relationships indicated a key role for the C-4 benzoyl group and the importance of a properly functionalized C-6 phenoxy moiety to modulate potency. Compound 8 acts as non-competitive inhibitor and its proposed pose in the so-called N pocket of the RdRp thumb domain allowed to explain the key contribution of the benzoyl and the phenoxy moieties for the ligand binding.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Enzyme Inhibitors/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Caco-2 Cells , Cell Survival/drug effects , Chlorocebus aethiops , Dengue Virus/enzymology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , RNA-Dependent RNA Polymerase/metabolism , Structure-Activity Relationship , Vero Cells
12.
J Gen Virol ; 98(11): 2676-2688, 2017 11.
Article in English | MEDLINE | ID: mdl-29022865

ABSTRACT

Toscana virus (TOSV) is an arthropod-borne phlebovirus within the family Phenuiviridae in the order Bunyavirales. It seems to be an important agent of human meningoencephalitis in the warm season in the Mediterranean area. Because the polymerase of Bunyavirales lacks a capping activity, it cleaves short-capped RNA leaders derived from the host cell, and uses them to initiate viral mRNA synthesis. To determine the size and nucleotide composition of the host-derived RNA leaders, and to elucidate the first steps of TOSV transcription initiation, we performed a high-throughput sequencing of the 5' end of TOSV mRNAs in infected cells at different times post-infection. Our results indicated that the viral polymerase cleaved the host-capped RNA leaders within a window of 11-16 nucleotides. A single population of cellular mRNAs could be cleaved at different sites to prime the synthesis of several viral mRNA species. The majority of the mRNA resulted from direct priming, but we observed mRNAs resulting from several rounds of prime-and-realign events. Our data suggest that the different rounds of the prime-and-realign mechanism result from the blocking of the template strand in a static position in the active site, leading to the slippage of the nascent strand by two nucleotides when the growing duplex is sorted out from the active site. To minimize this rate-limiting step, TOSV polymerase cleaves preferentially capped RNA leaders after GC, so as to greatly reduce the number of cycles of priming and realignment, and facilitate the separation of the growing duplex.


Subject(s)
RNA, Messenger/biosynthesis , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/metabolism , Sandfly fever Naples virus/enzymology , Sandfly fever Naples virus/genetics , Transcription, Genetic , Cells, Cultured , Epithelial Cells/virology , Humans , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Viral/chemistry , RNA, Viral/genetics
13.
Antiviral Res ; 144: 330-339, 2017 08.
Article in English | MEDLINE | ID: mdl-28676301

ABSTRACT

Two highly pathogenic human coronaviruses associated with severe respiratory syndromes emerged since the beginning of the century. The severe acute respiratory syndrome SARS-coronavirus (CoV) spread first in southern China in 2003 with about 8000 infected cases in few months. Then in 2012, the Middle East respiratory syndrome (MERS-CoV) emerged from the Arabian Peninsula giving a still on-going epidemic associated to a high fatality rate. CoVs are thus considered a major health threat. This is especially true as no vaccine nor specific therapeutic are available against either SARS- or MERS-CoV. Therefore, new drugs need to be identified in order to develop antiviral treatments limiting CoV replication. In this study, we focus on the nsp14 protein, which plays a key role in virus replication as it methylates the RNA cap structure at the N7 position of the guanine. We developed a high-throughput N7-MTase assay based on Homogenous Time Resolved Fluorescence (HTRF®) and screened chemical libraries (2000 compounds) on the SARS-CoV nsp14. 20 compounds inhibiting the SARS-CoV nsp14 were further evaluated by IC50 determination and their specificity was assessed toward flavivirus- and human cap N7-MTases. Our results reveal three classes of compounds: 1) molecules inhibiting several MTases as well as the dengue virus polymerase activity unspecifically, 2) pan MTases inhibitors targeting both viral and cellular MTases, and 3) inhibitors targeting one viral MTase more specifically showing however activity against the human cap N7-MTase. These compounds provide a first basis towards the development of more specific inhibitors of viral methyltransferases.


Subject(s)
Antiviral Agents/isolation & purification , Drug Evaluation, Preclinical/methods , Exoribonucleases/antagonists & inhibitors , Methyltransferases/antagonists & inhibitors , Severe acute respiratory syndrome-related coronavirus/enzymology , Viral Nonstructural Proteins/antagonists & inhibitors , Fluorometry , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests
14.
Antiviral Res ; 144: 216-222, 2017 08.
Article in English | MEDLINE | ID: mdl-28619679

ABSTRACT

Chikungunya virus (CHIKV) is a re-emerging alphavirus transmitted to humans by Aedes mosquitoes. Since 2005, CHIKV has been spreading worldwide resulting in epidemics in Africa, the Indian Ocean islands, Asia and more recently in the Americas. CHIKV is thus considered as a global health concern. There is no specific vaccine or drug available for the treatment of this incapacitating viral infection. We previously identified 3-aryl-[1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones as selective inhibitors of CHIKV replication and proposed the viral capping enzyme nsP1 as a target. This work describes the synthesis of novel series of related compounds carrying at the aryl moiety a methylketone and related oximes combined with an ethyl or an ethyl-mimic at 5-position of the triazolopyrimidinone. These compounds have shown antiviral activity against different CHIKV isolates in the very low µM range based on both virus yield reduction and virus-induced cell-killing inhibition assays. Moreover, these antivirals inhibit the in vitro guanylylation of alphavirus nsP1, as determined by Western blot using an anti-cap antibody. Thus, the data obtained seem to indicate that the anti-CHIKV activity might be related to the inhibition of this crucial step in the viral RNA capping machinery.


Subject(s)
Antiviral Agents/pharmacology , Chikungunya virus/drug effects , Enzyme Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Chlorocebus aethiops , Microbial Sensitivity Tests , Vero Cells
15.
Crit Rev Microbiol ; 43(6): 753-778, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28418734

ABSTRACT

Bunyaviridae family is the largest and most diverse family of RNA viruses. It has more than 350 members divided into five genera: Orthobunyavirus, Phlebovirus, Nairovirus, Hantavirus, and Tospovirus. They are present in the five continents, causing recurrent epidemics, epizootics, and considerable agricultural loss. The genome of bunyaviruses is divided into three segments of negative single-stranded RNA according to their relative size: L (Large), M (Medium) and S (Small) segment. Bunyaviridae RNA-dependent RNA polymerase (RdRp) is encoded by the L segment, and is in charge of the replication and transcription of the viral RNA in the cytoplasm of the infected cell. Viral RdRps share a characteristic right hand-like structure with three subdomains: finger, palm, and thumb subdomains that define the formation of the catalytic cavity. In addition to the N-terminal endonuclease domain, eight conserved motifs (A-H) have been identified in the RdRp of Bunyaviridae. In this review, we have summarized the recent insights from the structural and functional studies of RdRp to understand the roles of different motifs shared by RdRps, the mechanism of viral RNA replication, genome segment packaging by the nucleoprotein, cap-snatching, mRNA transcription, and other RNA mechanisms of bunyaviruses.


Subject(s)
Bunyaviridae/genetics , Bunyaviridae/metabolism , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/genetics , Virus Assembly/genetics , Virus Replication/genetics , Amino Acid Sequence/genetics , Bunyaviridae Infections/virology , Genome, Viral/genetics , RNA, Viral/genetics
16.
Antiviral Res ; 140: 95-105, 2017 04.
Article in English | MEDLINE | ID: mdl-28132865

ABSTRACT

Ebola virus (EBOV) haemorrhagic fever remains a threat to global public health with an urgent need for an effective treatment. In order to achieve these goals, access to non-human primate (NHP) laboratory models is an essential requirement. Here, we present the first NHP-EBOV laboratory model readily available to the European scientific community, based on infection of Mauritian cynomolgus macaques using a Central-African EBOV strain and increasing virus challenge dose (10, 100, or 1000 focus forming units per animal). The outcome of these experiments was assessed using clinical, hematological, and biochemical criteria. All challenge doses resulted in fatal infections within 8-11 days. Symptoms appeared from day 5 after infection onwards and disease progression was slower than in previous reports based on Asian cynomolgus macaques. Thus, our model resembled human disease more closely than previous models (onset of symptoms estimated 2-21 days after infection) extending the period of time available for therapeutic intervention. To establish the dynamics of virus genome variation, the study included the first detailed analysis of major and minor genomic EBOV variants during the course of the disease. Major variants were scarce and the population of minor variants was shaped by selective pressure similar to genomic mutations observed in Nature. This primate model provides a robust baseline for future genomic studies in the context of therapeutic methods for treating Ebola virus-infected patients.


Subject(s)
Ebolavirus/genetics , Hemorrhagic Fever, Ebola/virology , Macaca fascicularis , Animals , Disease Models, Animal , Disease Progression , Ebolavirus/isolation & purification , Ebolavirus/pathogenicity , Genome, Viral , Hemorrhagic Fever, Ebola/therapy , High-Throughput Nucleotide Sequencing , Humans
17.
Eur J Med Chem ; 125: 865-880, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27750202

ABSTRACT

With the aim to help drug discovery against dengue virus (DENV), a fragment-based drug design approach was applied to identify ligands targeting a main component of DENV replication complex: the NS5 AdoMet-dependent mRNA methyltransferase (MTase) domain, playing an essential role in the RNA capping process. Herein, we describe the identification of new inhibitors developed using fragment-based, structure-guided linking and optimization techniques. Thermal-shift assay followed by a fragment-based X-ray crystallographic screening lead to the identification of three fragment hits binding DENV MTase. We considered linking two of them, which bind to proximal sites of the AdoMet binding pocket, in order to improve their potency. X-ray crystallographic structures and computational docking were used to guide the fragment linking, ultimately leading to novel series of non-nucleoside inhibitors of flavivirus MTase, respectively N-phenyl-[(phenylcarbamoyl)amino]benzene-1-sulfonamide and phenyl [(phenylcarbamoyl)amino]benzene-1-sulfonate derivatives, that show a 10-100-fold stronger inhibition of 2'-O-MTase activity compared to the initial fragments.


Subject(s)
Antiviral Agents/chemistry , Dengue Virus/enzymology , Enzyme Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Discovery , Humans , Ligands , Methyltransferases/antagonists & inhibitors , Sulfates/pharmacology , Sulfonamides/pharmacology
18.
Antiviral Res ; 134: 226-235, 2016 10.
Article in English | MEDLINE | ID: mdl-27649989

ABSTRACT

RNA dependent RNA polymerases (RdRp) are essential enzymes for flavivirus replication. Starting from an in silico docking analysis we identified a pyridobenzothiazole compound, HeE1-2Tyr, able to inhibit West Nile and Dengue RdRps activity in vitro, which proved effective against different flaviviruses in cell culture. Crystallographic data show that HeE1-2Tyr binds between the fingers domain and the priming loop of Dengue virus RdRp (Site 1). Conversely, enzyme kinetics, binding studies and mutational analyses suggest that, during the catalytic cycle and assembly of the RdRp-RNA complex, HeE1-2Tyr might be hosted in a distinct binding site (Site 2). RdRp mutational studies, driven by in silico docking analysis, allowed us to locate the inhibition Site 2 in the thumb domain. Taken together, our results provide innovative concepts for optimization of a new class of anti-flavivirus compounds.


Subject(s)
Benzothiazoles/pharmacology , Flavivirus/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/drug effects , Antiviral Agents/pharmacology , Benzothiazoles/chemistry , Binding Sites , Catalytic Domain , Crystallization , Dengue Virus/drug effects , Dengue Virus/enzymology , Drug Discovery , Flavivirus/drug effects , Kinetics , Models, Molecular , Molecular Docking Simulation , Mutation , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , West Nile virus/drug effects , West Nile virus/enzymology
19.
Eur J Med Chem ; 109: 146-56, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26774922

ABSTRACT

Using a functional high-throughput screening (HTS) and subsequent SAR studies, we have discovered a novel series of non-nucleoside dengue viral polymerase inhibitors. We report the elaboration of SAR around hit compound 1 as well as the synthesis and antiviral evaluation of 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole and 5-phenyl-2-[2-(2-thienyl)ethenyl]-1,3,4-oxadiazole analogues derived from a rapid and easily accessible chemical pathway. A large number of compounds prepared by this method were shown to possess in vitro activity against the polymerase of dengue virus. The most potent inhibitors were tested against Dengue virus clinical isolates on infected cells model and exhibit submicromolar activity on the four dengue virus serotypes.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Dengue/drug therapy , Oxadiazoles/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Cell Line , Dengue/virology , Dengue Virus/enzymology , Humans , Oxadiazoles/chemistry , RNA-Dependent RNA Polymerase/metabolism , Thiophenes/chemistry , Thiophenes/pharmacology , Viral Nonstructural Proteins/metabolism
20.
J Gen Virol ; 95(Pt 11): 2462-2467, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25053561

ABSTRACT

Reverse genetics is a key methodology for producing genetically modified RNA viruses and deciphering cellular and viral biological properties, but methods based on the preparation of plasmid-based complete viral genomes are laborious and unpredictable. Here, both wild-type and genetically modified infectious RNA viruses were generated in days using the newly described ISA (infectious-subgenomic-amplicons) method. This new versatile and simple procedure may enhance our capacity to obtain infectious RNA viruses from PCR-amplified genetic material.


Subject(s)
RNA Viruses/genetics , RNA Viruses/physiology , Reverse Genetics/methods , Animals , Cell Line , Cricetinae , DNA, Complementary/genetics , DNA, Viral/genetics , Flavivirus/genetics , Flavivirus/physiology , Genome, Viral , Humans , Molecular Sequence Data , RNA, Viral/genetics , Virus Replication/genetics , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...