Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38334523

ABSTRACT

Iron oxide nanomaterials are promising candidates for various electrochemical applications. However, under operating conditions high electric resistance is still limiting performance and lifetime. By incorporating the electronically conductive carbon into a nanohybrid, performance may be increased and degeneration due to delamination may be prevented, eliminating major drawbacks. For future applications, performance is an important key, but also cost-effective manufacturing suitable for scale-up must be developed. A possible approach that shows good potential for up-scale is magnetron sputtering. In this study, a systematic investigation of iron oxides produced by RF magnetron sputtering was carried out, with a focus on establishing correlations between process parameters and resulting structural properties. It was observed that increasing the process pressure was favourable with regard to porosity. Over the entire pressure range investigated, the product consisted of low-crystalline Fe3O4, as well as Fe2O3 as a minor phase. During sputtering, a high degree of graphitisation of carbon was achieved, allowing for sufficient electronic conductivity. By means of a new alternating magnetron sputtering process, highly homogeneous salt-and-pepper-type arrangements of both nanodomains, iron oxide and carbon were achieved. This nano-containment of the redox-active species in a highly conductive carbon domain improves the material's overall conductivity, while simultaneously increasing the electrochemical stability by 44%, as confirmed by cyclic voltammetry.

2.
Polymers (Basel) ; 15(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37631400

ABSTRACT

Although atmospheric pressure plasma jets (APPJs) have been widely employed for materials modification, they have some drawbacks, such as the small treatment area (couple of cm2). To overcome this limitation, a funnel-like APPJ with a wide exit has been proposed. In this work, a gas-permeable cotton cloth covered the nozzle of the device to improve the gas flow dynamics and increase its range of operation. The funnel jet was flushed with Ar, and the plasma was ignited in a wide range of gas flow rates and the gap distances between the exit nozzle and the sample holder. The device characterization included electric measurements and optical emission spectroscopy (OES). To evaluate the size of the treatment and the degree of surface modification, large samples of high-density polyethylene (PE) were exposed to plasma for 5 min. Afterward, the samples were analyzed via water contact angle WCA measurements, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). It was found that surface modification occurs simultaneously on the top and bottom faces of the samples. However, the treatment incorporated different functional groups on each side.

3.
Polymers (Basel) ; 15(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36679342

ABSTRACT

A conical-shaped atmospheric pressure plasma jet (CS-APPJ) was developed to overcome a standard limitation of APPJs, which is their small treatment area. The CS-APPJs increase the treatment area but use the same gas flow. In the present work, polypropylene samples were treated by CS-APPJ and characterized by scanning electron microscope (SEM), the contact angle, Fourier-transformed infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was observed that the treatment co-occurs on the face directly in contact with the plasma and on the opposite face (OF) of the samples, i.e., no contact. However, the treatment changed the chemical composition on each side; the OF is rougher than the direct contact face (DCF), probably due to the oxygen groups in excess at the DCF and nitrogen in quantity at the OF. Although simultaneous treatment of both sides of the sample occurs for most atmospheric plasma treatments, this phenomenon is not explored in the literature.

4.
ChemSusChem ; 16(7): e202202213, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36542465

ABSTRACT

Inorganic-organic hybrid materials with redox-active components were prepared by an aqueous precipitation reaction of ammonium heptamolybdate (AHM) with para-phenylenediamine (PPD). A scalable and low-energy continuous wet chemical synthesis process, known as the microjet process, was used to prepare particles with large surface area in the submicrometer range with high purity and reproducibility on a large scale. Two different crystalline hybrid products were formed depending on the ratio of molybdate to organic ligand and pH. A ratio of para-phenylenediamine to ammonium heptamolybdate from 1 : 1 to 5 : 1 resulted in the compound [C6 H10 N2 ]2 [Mo8 O26 ] ⋅ 6 H2 O, while higher PPD ratios from 9 : 1 to 30 : 1 yielded a composition of [C6 H9 N2 ]4 [NH4 ]2 [Mo7 O24 ] ⋅ 3 H2 O. The electrochemical behavior of the two products was tested in a battery cell environment. Only the second of the two hybrid materials showed an exceptionally high capacity of 1084 mAh g-1 at 100 mA g-1 after 150 cycles. The maximum capacity was reached after an induction phase, which can be explained by a combination of a conversion reaction with lithium to Li2 MoO4 and an additional in situ polymerization of PPD. The final hybrid material is a promising material for lithium-ion battery (LIB) applications.

5.
Polymers (Basel) ; 14(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36365518

ABSTRACT

The plasma jet transfer technique relies on a conductive wire at floating potential, which, upon entering in contact with a primary discharge, is capable of igniting a small plasma plume at the distal end of a long flexible plastic tube. In this work, two different long tube configurations were employed for the surface modification of polypropylene (PP) samples using argon as the working gas. One of the jet configurations has a thin copper (Cu) wire, which was installed inside the long tube. In the other configuration, the floating electrode is a metallic mesh placed between two plastic tubes in a coaxial arrangement. In the first case, the tip of the Cu wire is in direct contact with the working gas at the plasma outlet, whereas, in the second, the inner plastic tube provides an additional dielectric barrier that prevents the conductor from being in contact with the gas. Water contact angle (WCA) measurements on treated PP samples revealed that different surface modification radial profiles are formed when the distance (d) between the plasma outlet and target is changed. Moreover, it was found that the highest WCA reduction does not always occur at the point where the plasma impinges the surface of the material, especially when the d value is small. Through X-ray photoelectron spectroscopy (XPS) analysis, it was confirmed that the WCA values are directly linked to the oxygen-functional groups formed on the PP surfaces after the plasma treatment. An analysis of the WCA measurements along the surface, as well as their temporal evolution, together with the XPS data, suggest that, when the treatment is performed at small d values, the plasma jet removes some functional groups at the point where the plasma hits the surface, thus leading to peculiar WCA profiles.

6.
Polymers (Basel) ; 14(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35808574

ABSTRACT

Polyethylene terephthalate (PET) is a thermoplastic polyester with numerous applications in industry. However, it requires surface modification on an industrial scale for printing and coating processes and plasma treatment is one of the most commonly used techniques to increase the hydrophilicity of the PET films. Systematic improvement of the surface modification by adaption of the plasma process can be aided by a comprehensive understanding of the surface morphology and chemistry. However, imaging large surface areas (tens of microns) with a resolution that allows understanding the surface quality and modification is challenging. As a proof-of-principle, plasma-treated PET films were used to demonstrate the capabilities of X-ray ptychography, currently under development at the soft X-ray free-electron laser FLASH at DESY, for imaging macroscopic samples. In combination with scanning electron microscopy (SEM), this new technique was used to study the effects of different plasma treatment processes on PET plastic films. The studies on the surface morphology were complemented by investigations of the surface chemistry using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). While both imaging techniques consistently showed an increase in roughness and change in morphology of the PET films after plasma treatment, X-ray ptychography can provide additional information on the three-dimensional morphology of the surface. At the same time, the chemical analysis shows an increase in the oxygen content and polarity of the surface without significant damage to the polymer, which is important for printing and coating processes.

7.
Materials (Basel) ; 15(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35629651

ABSTRACT

Applying antibacterial coatings to dental implant materials seems reasonable but can have negative influences on desired cell adhesion and healing. In this study, zirconia abutment specimens interacting with gingival tissue were used. The aim was to compare the influence of machined or coated zirconia surfaces on the adhesion and proliferation of human gingival fibroblasts (HGF-1). Surface modifications were performed using atmospheric plasma coating with hydroxyapatite, zinc, and copper. Zirconia specimens were divided into four groups: hydroxyapatite, hydroxyapatite with zinc oxide (ZnO), hydroxyapatite with copper (Cu), and an untreated machined surface. After the characterization of the surface conditions, the morphology of adhered HGF-1 was determined by fluorescence staining and subjected to statistical evaluation. The visual analysis of cell morphology by SEM showed flat, polygonal, and largely adherent fibroblast cells in the untreated group, while round to partially flat cells were recorded in the groups with hydroxyapatite, hydroxyapatite + ZnO, and hydroxyapatite + Cu. The cell membranes in the hydroxyapatite + ZnO and hydroxyapatite + Cu groups appeared porous. The results show that HGF-1 adhere and proliferate well on machined zirconia, while plasma coating with hydroxyapatite or hydroxyapatite mixtures does not lead to increased adhesion or proliferation.

9.
Membranes (Basel) ; 12(1)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35054612

ABSTRACT

In this work, supported cellulose acetate (CA) mixed matrix membranes (MMMs) were prepared and studied concerning their gas separation behaviors. The dispersion of carbon nanotube fillers were studied as a factor of polymer and filler concentrations using the mixing methods of the rotor-stator system (RS) and the three-roll-mill system (TRM). Compared to the dispersion quality achieved by RS, samples prepared using the TRM seem to have slightly bigger, but fewer and more homogenously distributed, agglomerates. The green γ-butyrolactone (GBL) was chosen as a polyimide (PI) polymer-solvent, whereas diacetone alcohol (DAA) was used for preparing the CA solutions. The coating of the thin CA separation layer was applied using a spin coater. For coating on the PP carriers, a short parameter study was conducted regarding the plasma treatment to affect the wettability, the coating speed, and the volume of dispersion that was applied to the carrier. As predicted by the parameter study, the amount of dispersion that remained on the carriers decreased with an increasing rotational speed during the spin coating process. The dry separation layer thickness was varied between about 1.4 and 4.7 µm. Electrically conductive additives in a non-conductive matrix showed a steeply increasing electrical conductivity after passing the so-called percolation threshold. This was used to evaluate the agglomeration behavior in suspension and in the applied layer. Gas permeation tests were performed using a constant volume apparatus at feed pressures of 5, 10, and 15 bar. The highest calculated CO2/N2 selectivity (ideal), 21, was achieved for the CA membrane and corresponded to a CO2 permeability of 49.6 Barrer.

10.
Adv Sci (Weinh) ; 8(4): 2003762, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33643809

ABSTRACT

Understanding the effects that sterilization methods have on the surface of a biomaterial is a prerequisite for clinical deployment. Sterilization causes alterations in a material's surface chemistry and surface structures that can result in significant changes to its cellular response. Here we compare surfaces resulting from the application of the industry standard autoclave sterilisation to that of surfaces resulting from the use of low-pressure Argon glow discharge within a novel gas permeable packaging method in order to explore a potential new biomaterial sterilisation method. Material surfaces are assessed by applying secondary electron hyperspectral imaging (SEHI). SEHI is a novel low-voltage scanning electron microscopy based characterization technique that, in addition to capturing topographical images, also provides nanoscale resolution chemical maps by utilizing the energy distribution of emitted secondary electrons. Here, SEHI maps are exploited to assess the lateral distributions of diverse functional groups that are effected by the sterilization treatments. This information combined with a range of conventional surface analysis techniques and a cellular metabolic activity assay reveals persuasive reasons as to why low-pressure argon glow discharge should be considered for further optimization as a potential terminal sterilization method for PGS-M, a functionalized form of poly(glycerol sebacate) (PGS).

11.
RSC Adv ; 11(55): 34710-34723, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-35494782

ABSTRACT

Polypropylene (PP) surgical mesh, used successfully for the surgical repair of abdominal hernias, is associated with serious clinical complications when used in the pelvic floor for repair of stress urinary incontinence or support of pelvic organ prolapse. While manufacturers claim that the material is inert and non-degradable, there is a growing body of evidence that asserts PP fibres are subject to oxidative damage and indeed explanted material from patients suffering with clinical complications has shown some evidence of fibre cracking and oxidation. It has been proposed that a pathological cellular response to the surgical mesh contributes to the medical complications; however, the mechanisms that trigger the specific host response against the material are not well understood. Specifically, this study was constructed to investigate the mechano-chemical effects of oxidation and dynamic distension on polypropylene surgical mesh. To do this we used a novel advanced spectroscopical characterisation technique, secondary electron hyperspectral imaging (SEHI), which is based on the collection of secondary electron emission spectra in a scanning electron microscope (SEM) to reveal mechanical-chemical reactions within PP meshes.

12.
Nat Mater ; 20(2): 208-213, 2021 02.
Article in English | MEDLINE | ID: mdl-32839587

ABSTRACT

Several concepts for platinum-based catalysts for the oxygen reduction reaction (ORR) are presented that exceed the US Department of Energy targets for Pt-related ORR mass activity. Most concepts achieve their high ORR activity by increasing the Pt specific activity at the expense of a lower electrochemically active surface area (ECSA). In the potential region controlled by kinetics, such a lower ECSA is counterbalanced by the high specific activity. At higher overpotentials, however, which are often applied in real systems, a low ECSA leads to limitations in the reaction rate not by kinetics, but by mass transport. Here we report on self-supported platinum-cobalt oxide networks that combine a high specific activity with a high ECSA. The high ECSA is achieved by a platinum-cobalt oxide bone nanostructure that exhibits unprecedentedly high mass activity for self-supported ORR catalysts. This concept promises a stable fuel-cell operation at high temperature, high current density and low humidification.

13.
Chem Commun (Camb) ; 56(75): 11082-11085, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32812543

ABSTRACT

MAX phases are etched using an ionic liquid-water mixture to produce titanium carbide MXenes. The process avoids the use of any acid. Hydrolysis of the fluorine-containing ionic liquid leads to the selective removal of Al, while the ionic liquid is intercalated in-between the transition metal carbide layers.

14.
Adv Sci (Weinh) ; 6(19): 1900719, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31592411

ABSTRACT

Carbon and carbon/metal systems with a multitude of functionalities are ubiquitous in new technologies but understanding on the nanoscale remains elusive due to their affinity for interaction with their environment and limitations in available characterization techniques. This paper introduces a spectroscopic technique and demonstrates its capacity to reveal chemical variations of carbon. The effectiveness of this approach is validated experimentally through spatially averaging spectroscopic techniques and using Monte Carlo modeling. Characteristic spectra shapes and peak positions for varying contributions of sp2-like or sp3-like bond types and amorphous hydrogenated carbon are reported under circumstances which might be observed on highly oriented pyrolytic graphite (HOPG) surfaces as a result of air or electron beam exposure. The spectral features identified above are then used to identify the different forms of carbon present within the metallic films deposited from reactive organometallic inks. While spectra for metals is obtained in dedicated surface science instrumentation, the complex relations between carbon and metal species is only revealed by secondary electron (SE) spectroscopy and SE hyperspectral imaging obtained in a state-of-the-art scanning electron microscope (SEM). This work reveals the inhomogeneous incorporation of carbon on the nanoscale but also uncovers a link between local orientation of metallic components and carbon form.

15.
ACS Appl Mater Interfaces ; 10(22): 18675-18684, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29749726

ABSTRACT

Merging of supercapacitors and batteries promises the creation of electrochemical energy storage devices that combine high specific energy, power, and cycling stability. For that purpose, lithium-ion capacitors (LICs) that store energy by lithiation reactions at the negative electrode and double-layer formation at the positive electrode are currently investigated. In this study, we explore the suitability of molybdenum oxide as a negative electrode material in LICs for the first time. Molybdenum oxide-carbon nanotube hybrid materials were synthesized via atomic layer deposition, and different crystal structures and morphologies were obtained by post-deposition annealing. These model materials are first structurally characterized and electrochemically evaluated in half-cells. Benchmarking in LIC full-cells revealed the influences of crystal structure, half-cell capacity, and rate handling on the actual device level performance metrics. The energy efficiency, specific energy, and power are mainly influenced by the overpotential and kinetics of the lithiation reaction during charging. Optimized LIC cells show a maximum specific energy of about 70 W·h·kg-1 and a high specific power of 4 kW·kg-1 at 34 W·h·kg-1. The longevity of the LIC cells is drastically increased without significantly reducing the energy by preventing a deep cell discharge, hindering the negative electrode from crossing its anodic potential limit.

16.
ChemSusChem ; 11(1): 159-170, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29105356

ABSTRACT

Free-standing, binder-free, titanium-niobium oxide/carbon hybrid nanofibers are prepared for Li-ion battery applications. A one-pot synthesis offers a significant reduction of processing steps and avoids the use of environmentally unfriendly binder materials, making the approach highly sustainable. Tetragonal Nb2 O5 /C and monoclinic Ti2 Nb10 O29 /C hybrid nanofibers synthesized at 1000 °C displayed the highest electrochemical performance, with capacity values of 243 and 267 mAh g-1 , respectively, normalized to the electrode mass. At 5 A g-1 , the Nb2 O5 /C and Ti2 Nb10 O29 /C hybrid fibers maintained 78 % and 53 % of the initial capacity, respectively. The higher rate performance and stability of tetragonal Nb2 O5 compared to that of monoclinic Ti2 Nb10 O29 is related to the low energy barriers for Li+ transport in its crystal structure, with no phase transformation. The improved rate performance resulted from the excellent charge propagation in the continuous nanofiber network.


Subject(s)
Carbon/chemistry , Electric Power Supplies , Electrodes , Lithium/chemistry , Nanofibers/chemistry , Niobium/chemistry , Titanium/chemistry , Electrochemical Techniques , Ion Transport , Microscopy, Electron, Scanning , Molecular Structure , Oxides/chemistry , Photoelectron Spectroscopy , Spectrometry, X-Ray Emission , X-Ray Diffraction
17.
Mater Sci Eng C Mater Biol Appl ; 59: 514-523, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26652403

ABSTRACT

The generation of hybrid materials based on ß-tricalcium phosphate (TCP) and various biodegradable polymers like poly(l-lactide-co-d,l-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA - improvement of compressive strength of calcium phosphate scaffolds - is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10mm hybrid scaffold were dynamically cultivated for 14days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts.


Subject(s)
Calcium Phosphates/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Cell Line , Cell Movement/drug effects , Humans , Plasma Gases , Printing, Three-Dimensional
18.
Clin Oral Investig ; 19(9): 2319-26, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25898894

ABSTRACT

OBJECTIVES: To prevent oral candidiasis, it is crucial to inactivate Candida-based biofilms on dentures. Common denture cleansing solutions cannot sufficiently inactivate Candida albicans. Therefore, we investigated the anticandidal efficacy of a physical plasma against C. albicans biofilms in vitro. MATERIALS AND METHODS: Argon or argon plasma with 1 % oxygen admixture was applied on C. albicans biofilms grown for 2, 7, or 16 days on polymethylmethacrylate discs; 0.1 % chlorhexidine digluconate (CHX) and 0.6 % sodium hypochlorite (NaOCl) solutions served as positive treatment controls. In addition, these two solutions were applied in combination with plasma for 30 min to assess potential synergistic effects. The anticandidal efficacy was determined by the number of colony forming units (CFU) in log(10) and expressed as reduction factor (RF, the difference between control and treated specimen). RESULTS: On 2-day-biofilms, plasma treatment alone or combined with 30 min CHX treatment led to significant differences of means of CFU (RF = 4.2 and RF = 4.3), clearly superior to CHX treatment alone (RF = 0.6). Plasma treatment of 7-day-or 16-day-old biofilms revealed no significant CFU reduction. The treatment of 7-day-old (RF = 1.7) and 16-day-old (RF = 1.3) biofilms was slightly more effective with NaOCl alone than with the combined treatment of NaOCl and plasma (RF = 1.6/RF = 1.9). The combination of CHX and plasma increased the RF immaterially. CONCLUSION: The use of plasma alone and in combination with antiseptics is promising anticandidal regimens for daily use on dentures when biofilms are not older than 2 days. CLINICAL RELEVANCE: Plasma could help to reduce denture-associated candidiasis.


Subject(s)
Anti-Infective Agents, Local/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Denture Bases/microbiology , Plasma Gases/pharmacology , Chlorhexidine/analogs & derivatives , Chlorhexidine/pharmacology , Colony Count, Microbial , In Vitro Techniques , Polymethyl Methacrylate , Sodium Hypochlorite/pharmacology , Time Factors
19.
J Biomed Mater Res B Appl Biomater ; 99(1): 199-206, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21714084

ABSTRACT

Novel non-thermal plasma (NTP) technology has the potential to address the bonding issues of Y-TZP and Ti surfaces. This study aims to chemically characterize and evaluate the surface energy (SE) of Y-TZP and Ti surfaces after NTP application. Y-TZP and Ti discs were treated with a hand-held NTP device followed by SE evaluation. Spectra of Y-TZP 3d and Ti 2p regions, survey scans, and quantification of the elements were performed via X-ray photoelectron Spectroscopy (XPS) prior and after NTP. Separate Y-TZP and Ti discs were NTP treated for contact angle readings using (10-methacryloyloxydecyl dihydrogenphosphate) MDP primer. Significant augmentation of SE values was observed in all NTP treated groups. XPS detected a large increase in the O element fraction on both Y-TZP and Ti surfaces. Reduction of contact angle reading was obtained when the MDP primer was placed on NTP treated Y-TZP. Ti surface showed high SE before and after NTP application on Ti surfaces. NTP decreased C and increased O on both surfaces independently of application protocol. Wettability of MDP primer on Y-TZP was significantly increased after NTP. The high polarity obtained on Y-TZP and Ti surfaces after NTP applications appear promising to enhance bonds.


Subject(s)
Titanium/chemistry , Yttrium/chemistry , Zirconium/chemistry , Materials Testing , Photoelectron Spectroscopy , Plasma Gases/chemistry , Surface Properties , Wettability
20.
J Biomed Mater Res B Appl Biomater ; 91(1): 153-62, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19402140

ABSTRACT

The aim of this study was the transformation of the macroporous zirconium dioxide ceramic Sponceram into a biomimetic composite material. To enhance the adhesion of cells and to induce their differentiation into osteoblasts poly-L-lysine and BMP-2 were coupled to polymers and copolymers based on 2-deoxy-N-methacrylamido-D-glucose (ox.p(MAG) and p(MVA)) used as spacer, which were adsorbed onto the ceramic surface. The development of the composite materials was validated step by step qualitatively and quantitatively. The bioactive potential of the composite materials was tested under static and dynamic conditions using an osteoblastic model cell line and human mesenchymal stem cells. Both composite materials showed potential to enhance the adhesion of cells in the first 10 days of their cultivation. One of the composite materials, namely Sponceram/ox.p(MAG)-BMP-2, was tested into a rotating-bed bioreactor with regard to its osteogenic differentiation-inducing potential. Compared with Sponceram modified with BMP-2 without a polymer spacer, it showed increased expression of osteogenic markers determined by PCR analysis. In summary, the in vitro testing of the developed composite materials demonstrated a promising potential for their application as biomimetic scaffold materials with controllable properties.


Subject(s)
Bone and Bones , Cell Adhesion/physiology , Ceramics/chemistry , Ligands , Tissue Engineering/methods , 3T3 Cells , Adsorption , Animals , Biocompatible Materials/chemistry , Bone Morphogenetic Protein 2/chemistry , Bone Morphogenetic Protein 2/metabolism , Bone Substitutes/chemistry , Bone and Bones/cytology , Bone and Bones/physiology , Cell Differentiation/physiology , Cells, Cultured , Glucose/chemistry , Humans , Lysine/chemistry , Lysine/metabolism , Materials Testing , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Mice , Molecular Structure , Osteoblasts/cytology , Osteoblasts/physiology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...