Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37922174

ABSTRACT

Visual clustering is a common perceptual task in scatterplots that supports diverse analytics tasks (e.g., cluster identification). However, even with the same scatterplot, the ways of perceiving clusters (i.e., conducting visual clustering) can differ due to the differences among individuals and ambiguous cluster boundaries. Although such perceptual variability casts doubt on the reliability of data analysis based on visual clustering, we lack a systematic way to efficiently assess this variability. In this research, we study perceptual variability in conducting visual clustering, which we call Cluster Ambiguity. To this end, we introduce CLAMS, a data-driven visual quality measure for automatically predicting cluster ambiguity in monochrome scatterplots. We first conduct a qualitative study to identify key factors that affect the visual separation of clusters (e.g., proximity or size difference between clusters). Based on study findings, we deploy a regression module that estimates the human-judged separability of two clusters. Then, CLAMS predicts cluster ambiguity by analyzing the aggregated results of all pairwise separability between clusters that are generated by the module. CLAMS outperforms widely-used clustering techniques in predicting ground truth cluster ambiguity. Meanwhile, CLAMS exhibits performance on par with human annotators. We conclude our work by presenting two applications for optimizing and benchmarking data mining techniques using CLAMS. The interactive demo of CLAMS is available at clusterambiguity.dev.

2.
IEEE Trans Vis Comput Graph ; 29(10): 4312-4327, 2023 Oct.
Article in English | MEDLINE | ID: mdl-35816525

ABSTRACT

Scatterplots are among the most widely used visualization techniques. Compelling scatterplot visualizations improve understanding of data by leveraging visual perception to boost awareness when performing specific visual analytic tasks. Design choices in scatterplots, such as graphical encodings or data aspects, can directly impact decision-making quality for low-level tasks like clustering. Hence, constructing frameworks that consider both the perceptions of the visual encodings and the task being performed enables optimizing visualizations to maximize efficacy. In this article, we propose an automatic tool to optimize the design factors of scatterplots to reveal the most salient cluster structure. Our approach leverages the merge tree data structure to identify the clusters and optimize the choice of subsampling algorithm, sampling rate, marker size, and marker opacity used to generate a scatterplot image. We validate our approach with user and case studies that show it efficiently provides high-quality scatterplot designs from a large parameter space.

3.
IEEE Trans Vis Comput Graph ; 28(12): 5026-5048, 2022 12.
Article in English | MEDLINE | ID: mdl-34283717

ABSTRACT

Knowledge of human perception has long been incorporated into visualizations to enhance their quality and effectiveness. The last decade, in particular, has shown an increase in perception-based visualization research studies. With all of this recent progress, the visualization community lacks a comprehensive guide to contextualize their results. In this report, we provide a systematic and comprehensive review of research studies on perception related to visualization. This survey reviews perception-focused visualization studies since 1980 and summarizes their research developments focusing on low-level tasks, further breaking techniques down by visual encoding and visualization type. In particular, we focus on how perception is used to evaluate the effectiveness of visualizations, to help readers understand and apply the principles of perception of their visualization designs through a task-optimized approach. We concluded our report with a summary of the weaknesses and open research questions in the area.


Subject(s)
Computer Graphics , Perception , Humans , Surveys and Questionnaires
4.
IEEE Trans Vis Comput Graph ; 27(2): 1829-1839, 2021 02.
Article in English | MEDLINE | ID: mdl-33048695

ABSTRACT

Scatterplots are used for a variety of visual analytics tasks, including cluster identification, and the visual encodings used on a scatterplot play a deciding role on the level of visual separation of clusters. For visualization designers, optimizing the visual encodings is crucial to maximizing the clarity of data. This requires accurately modeling human perception of cluster separation, which remains challenging. We present a multi-stage user study focusing on four factors-distribution size of clusters, number of points, size of points, and opacity of points-that influence cluster identification in scatterplots. From these parameters, we have constructed two models, a distance-based model, and a density-based model, using the merge tree data structure from Topological Data Analysis. Our analysis demonstrates that these factors play an important role in the number of clusters perceived, and it verifies that the distance-based and density-based models can reasonably estimate the number of clusters a user observes. Finally, we demonstrate how these models can be used to optimize visual encodings on real-world data.

5.
IEEE Trans Vis Comput Graph ; 27(2): 1536-1546, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33048725

ABSTRACT

We present a comprehensive framework for evaluating line chart smoothing methods under a variety of visual analytics tasks. Line charts are commonly used to visualize a series of data samples. When the number of samples is large, or the data are noisy, smoothing can be applied to make the signal more apparent. However, there are a wide variety of smoothing techniques available, and the effectiveness of each depends upon both nature of the data and the visual analytics task at hand. To date, the visualization community lacks a summary work for analyzing and classifying the various smoothing methods available. In this paper, we establish a framework, based on 8 measures of the line smoothing effectiveness tied to 8 low-level visual analytics tasks. We then analyze 12 methods coming from 4 commonly used classes of line chart smoothing-rank filters, convolutional filters, frequency domain filters, and subsampling. The results show that while no method is ideal for all situations, certain methods, such as Gaussian filters and TOPOLOGY-based subsampling, perform well in general. Other methods, such as low-pass CUTOFF filters and Douglas-peucker subsampling, perform well for specific visual analytics tasks. Almost as importantly, our framework demonstrates that several methods, including the commonly used UNIFORM subsampling, produce low-quality results, and should, therefore, be avoided, if possible.

SELECTION OF CITATIONS
SEARCH DETAIL
...