Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
PLoS Comput Biol ; 20(6): e1012231, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900817

ABSTRACT

Computational fluid dynamics (CFD) can be used for non-invasive evaluation of hemodynamics. However, its routine use is limited by labor-intensive manual segmentation, CFD mesh creation, and time-consuming simulation. This study aims to train a deep learning model to both generate patient-specific volume-meshes of the pulmonary artery from 3D cardiac MRI data and directly estimate CFD flow fields. This proof-of-concept study used 135 3D cardiac MRIs from both a public and private dataset. The pulmonary arteries in the MRIs were manually segmented and converted into volume-meshes. CFD simulations were performed on ground truth meshes and interpolated onto point-point correspondent meshes to create the ground truth dataset. The dataset was split 110/10/15 for training, validation, and testing. Image2Flow, a hybrid image and graph convolutional neural network, was trained to transform a pulmonary artery template to patient-specific anatomy and CFD values, taking a specific inlet velocity as an additional input. Image2Flow was evaluated in terms of segmentation, and the accuracy of predicted CFD was assessed using node-wise comparisons. In addition, the ability of Image2Flow to respond to increasing inlet velocities was also evaluated. Image2Flow achieved excellent segmentation accuracy with a median Dice score of 0.91 (IQR: 0.86-0.92). The median node-wise normalized absolute error for pressure and velocity magnitude was 11.75% (IQR: 9.60-15.30%) and 9.90% (IQR: 8.47-11.90), respectively. Image2Flow also showed an expected response to increased inlet velocities with increasing pressure and velocity values. This proof-of-concept study has shown that it is possible to simultaneously perform patient-specific volume-mesh based segmentation and pressure and flow field estimation using Image2Flow. Image2Flow completes segmentation and CFD in ~330ms, which is ~5000 times faster than manual methods, making it more feasible in a clinical environment.

2.
Article in English | MEDLINE | ID: mdl-38905513

ABSTRACT

Long-range sequencing grants insight into additional genetic information beyond that which can be accessed by both short reads and modern long-read technology. Several new sequencing technologies are available for long-range datasets such as "Hi-C" and "Linked Reads" with high-throughput and high-resolution genome analysis, and are rapidly advancing the field of genome assembly, genome scaffolding, and more comprehensive variant identification. In this article, we focused on five major long-range sequencing technologies: high-throughput chromosome conformation capture (Hi-C), 10x Genomics Linked Reads, haplotagging, transposase enzyme linked long-read sequencing (TELL-seq), and single tube long fragment read (stLFR). We detailed the mechanisms and data products of the five platforms, introduced several of the most important applications, evaluated the quality of sequencing data from different platforms, and discussed the currently available bioinformatics tools. We hope this work will benefit the selection of appropriate long-range technology for specific biological studies.

3.
Microb Genom ; 10(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38578268

ABSTRACT

Background. PCR amplification is a necessary step in many next-generation sequencing (NGS) library preparation methods [1, 2]. Whilst many PCR enzymes are developed to amplify single targets efficiently, accurately and with specificity, few are developed to meet the challenges imposed by NGS PCR, namely unbiased amplification of a wide range of different sizes and GC content. As a result PCR amplification during NGS library prep often results in bias toward GC neutral and smaller fragments. As NGS has matured, optimized NGS library prep kits and polymerase formulations have emerged and in this study we have tested a wide selection of available enzymes for both short-read Illumina library preparation and long fragment amplification ahead of long-read sequencing.We tested over 20 different hi-fidelity PCR enzymes/NGS amplification mixes on a range of Illumina library templates of varying GC content and composition, and find that both yield and genome coverage uniformity characteristics of the commercially available enzymes varied dramatically. Three enzymes Quantabio RepliQa Hifi Toughmix, Watchmaker Library Amplification Hot Start Master Mix (2X) 'Equinox' and Takara Ex Premier were found to give a consistent performance, over all genomes, that mirrored closely that observed for PCR-free datasets. We also test a range of enzymes for long-read sequencing by amplifying size fractionated S. cerevisiae DNA of average size 21.6 and 13.4 kb, respectively.The enzymes of choice for short-read (Illumina) library fragment amplification are Quantabio RepliQa Hifi Toughmix, Watchmaker Library Amplification Hot Start Master Mix (2X) 'Equinox' and Takara Ex Premier, with RepliQa also being the best performing enzyme from the enzymes tested for long fragment amplification prior to long-read sequencing.


Subject(s)
DNA , Saccharomyces cerevisiae , Polymerase Chain Reaction/methods , Gene Library , High-Throughput Nucleotide Sequencing/methods
4.
Cell Genom ; 4(2): 100484, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38232733

ABSTRACT

The epigenetic landscape of cancer is regulated by many factors, but primarily it derives from the underlying genome sequence. Chromothripsis is a catastrophic localized genome shattering event that drives, and often initiates, cancer evolution. We characterized five esophageal adenocarcinoma organoids with chromothripsis using long-read sequencing and transcriptome and epigenome profiling. Complex structural variation and subclonal variants meant that haplotype-aware de novo methods were required to generate contiguous cancer genome assemblies. Chromosomes were assembled separately and scaffolded using haplotype-resolved Hi-C reads, producing accurate assemblies even with up to 900 structural rearrangements. There were widespread differences between the chromothriptic and wild-type copies of chromosomes in topologically associated domains, chromatin accessibility, histone modifications, and gene expression. Differential epigenome peaks were most enriched within 10 kb of chromothriptic structural variants. Alterations in transcriptome and higher-order chromosome organization frequently occurred near differential epigenetic marks. Overall, chromothripsis reshapes gene regulation, causing coordinated changes in epigenetic landscape, transcription, and chromosome conformation.


Subject(s)
Adenocarcinoma , Chromothripsis , Esophageal Neoplasms , Humans , Haplotypes , Chromatin , Genome , Adenocarcinoma/genetics
5.
Radiol Artif Intell ; 6(1): e230132, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38166332

ABSTRACT

Purpose To develop an end-to-end deep learning (DL) pipeline for automated ventricular segmentation of cardiac MRI data from a multicenter registry of patients with Fontan circulation (Fontan Outcomes Registry Using CMR Examinations [FORCE]). Materials and Methods This retrospective study used 250 cardiac MRI examinations (November 2007-December 2022) from 13 institutions for training, validation, and testing. The pipeline contained three DL models: a classifier to identify short-axis cine stacks and two U-Net 3+ models for image cropping and segmentation. The automated segmentations were evaluated on the test set (n = 50) by using the Dice score. Volumetric and functional metrics derived from DL and ground truth manual segmentations were compared using Bland-Altman and intraclass correlation analysis. The pipeline was further qualitatively evaluated on 475 unseen examinations. Results There were acceptable limits of agreement (LOA) and minimal biases between the ground truth and DL end-diastolic volume (EDV) (bias: -0.6 mL/m2, LOA: -20.6 to 19.5 mL/m2) and end-systolic volume (ESV) (bias: -1.1 mL/m2, LOA: -18.1 to 15.9 mL/m2), with high intraclass correlation coefficients (ICCs > 0.97) and Dice scores (EDV, 0.91 and ESV, 0.86). There was moderate agreement for ventricular mass (bias: -1.9 g/m2, LOA: -17.3 to 13.5 g/m2) and an ICC of 0.94. There was also acceptable agreement for stroke volume (bias: 0.6 mL/m2, LOA: -17.2 to 18.3 mL/m2) and ejection fraction (bias: 0.6%, LOA: -12.2% to 13.4%), with high ICCs (>0.81). The pipeline achieved satisfactory segmentation in 68% of the 475 unseen examinations, while 26% needed minor adjustments, 5% needed major adjustments, and in 0.4%, the cropping model failed. Conclusion The DL pipeline can provide fast standardized segmentation for patients with single ventricle physiology across multiple centers. This pipeline can be applied to all cardiac MRI examinations in the FORCE registry. Keywords: Cardiac, Adults and Pediatrics, MR Imaging, Congenital, Volume Analysis, Segmentation, Quantification Supplemental material is available for this article. © RSNA, 2023.


Subject(s)
Deep Learning , Univentricular Heart , Adult , Child , Humans , Heart , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging , Retrospective Studies , Multicenter Studies as Topic
6.
Nat Cancer ; 4(11): 1575-1591, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783803

ABSTRACT

Transmissible cancers are malignant cell lineages that spread clonally between individuals. Several such cancers, termed bivalve transmissible neoplasia (BTN), induce leukemia-like disease in marine bivalves. This is the case of BTN lineages affecting the common cockle, Cerastoderma edule, which inhabits the Atlantic coasts of Europe and northwest Africa. To investigate the evolution of cockle BTN, we collected 6,854 cockles, diagnosed 390 BTN tumors, generated a reference genome and assessed genomic variation across 61 tumors. Our analyses confirmed the existence of two BTN lineages with hemocytic origins. Mitochondrial variation revealed mitochondrial capture and host co-infection events. Mutational analyses identified lineage-specific signatures, one of which likely reflects DNA alkylation. Cytogenetic and copy number analyses uncovered pervasive genomic instability, with whole-genome duplication, oncogene amplification and alkylation-repair suppression as likely drivers. Satellite DNA distributions suggested ancient clonal origins. Our study illuminates long-term cancer evolution under the sea and reveals tolerance of extreme instability in neoplastic genomes.


Subject(s)
Bivalvia , Cardiidae , Leukemia , Neoplasms , Animals , Humans , Cardiidae/genetics , Clonal Evolution
7.
Microb Genom ; 9(5)2023 05.
Article in English | MEDLINE | ID: mdl-37194944

ABSTRACT

The National Collection of Type Cultures (NCTC) was founded on 1 January 1920 in order to fulfil a recognized need for a centralized repository for bacterial and fungal strains within the UK. It is among the longest-established collections of its kind anywhere in the world and today holds approximately 6000 type and reference bacterial strains - many of medical, scientific and veterinary importance - available to academic, health, food and veterinary institutions worldwide. Recently, a collaboration between NCTC, Pacific Biosciences and the Wellcome Sanger Institute established the NCTC3000 project to long-read sequence and assemble the genomes of up to 3000 NCTC strains. Here, at the beginning of the collection's second century, we introduce the resulting NCTC3000 sequence read datasets, genome assemblies and annotations as a unique, historically and scientifically relevant resource for the benefit of the international bacterial research community.


Subject(s)
Genome, Bacterial , Genomics , Sequence Analysis, DNA/methods , Genome, Bacterial/genetics , Bacteria/genetics
8.
PLoS Comput Biol ; 19(4): e1011055, 2023 04.
Article in English | MEDLINE | ID: mdl-37093855

ABSTRACT

Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model consisted of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N = 67). Inference performed on 200 test shapes resulted in average errors of 6.01% ±3.12 SD and 3.99% ±0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ∼0.075 seconds (4,000x faster than the solver). This proof-of-concept study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with reasonable accuracy.


Subject(s)
Hemodynamics , Models, Cardiovascular , Humans , Blood Flow Velocity , Computer Simulation , Neural Networks, Computer , Hydrodynamics
9.
Science ; 380(6642): 283-293, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37079675

ABSTRACT

Tasmanian devils have spawned two transmissible cancer lineages, named devil facial tumor 1 (DFT1) and devil facial tumor 2 (DFT2). We investigated the genetic diversity and evolution of these clones by analyzing 78 DFT1 and 41 DFT2 genomes relative to a newly assembled, chromosome-level reference. Time-resolved phylogenetic trees reveal that DFT1 first emerged in 1986 (1982 to 1989) and DFT2 in 2011 (2009 to 2012). Subclone analysis documents transmission of heterogeneous cell populations. DFT2 has faster mutation rates than DFT1 across all variant classes, including substitutions, indels, rearrangements, transposable element insertions, and copy number alterations, and we identify a hypermutated DFT1 lineage with defective DNA mismatch repair. Several loci show plausible evidence of positive selection in DFT1 or DFT2, including loss of chromosome Y and inactivation of MGA, but none are common to both cancers. This study reveals the parallel long-term evolution of two transmissible cancers inhabiting a common niche in Tasmanian devils.


Subject(s)
Evolution, Molecular , Facial Neoplasms , Marsupialia , Selection, Genetic , Animals , Facial Neoplasms/classification , Facial Neoplasms/genetics , Facial Neoplasms/veterinary , Genome , Marsupialia/genetics , Phylogeny
10.
Wellcome Open Res ; 6: 118, 2021.
Article in English | MEDLINE | ID: mdl-34660910

ABSTRACT

We present a genome assembly from an individual male Rattus norvegicus (the Norway rat; Chordata; Mammalia; Rodentia; Muridae). The genome sequence is 2.44 gigabases in span. The majority of the assembly is scaffolded into 20 chromosomal pseudomolecules, with both X and Y sex chromosomes assembled. This genome assembly, mRatBN7.2, represents the new reference genome for R. norvegicus and has been adopted by the Genome Reference Consortium.

11.
Wellcome Open Res ; 6: 112, 2021.
Article in English | MEDLINE | ID: mdl-34671705

ABSTRACT

We present a genome assembly from an individual female Aquila chrysaetos chrysaetos (the European golden eagle; Chordata; Aves; Accipitridae). The genome sequence is 1.23 gigabases in span. The majority of the assembly is scaffolded into 28 chromosomal pseudomolecules, including the W and Z sex chromosomes.

12.
Wellcome Open Res ; 6: 225, 2021.
Article in English | MEDLINE | ID: mdl-34703904

ABSTRACT

We present a genome assembly from a clonal population of Eimeria tenella Houghton parasites (Apicomplexa; Conoidasida; Eucoccidiorida; Eimeriidae). The genome sequence is 53.25 megabases in span. The entire assembly is scaffolded into 15 chromosomal pseudomolecules, with complete mitochondrion and apicoplast organellar genomes also present.

13.
Elife ; 102021 08 13.
Article in English | MEDLINE | ID: mdl-34387545

ABSTRACT

Monitoring the spread of SARS-CoV-2 and reconstructing transmission chains has become a major public health focus for many governments around the world. The modest mutation rate and rapid transmission of SARS-CoV-2 prevents the reconstruction of transmission chains from consensus genome sequences, but within-host genetic diversity could theoretically help identify close contacts. Here we describe the patterns of within-host diversity in 1181 SARS-CoV-2 samples sequenced to high depth in duplicate. 95.1% of samples show within-host mutations at detectable allele frequencies. Analyses of the mutational spectra revealed strong strand asymmetries suggestive of damage or RNA editing of the plus strand, rather than replication errors, dominating the accumulation of mutations during the SARS-CoV-2 pandemic. Within- and between-host diversity show strong purifying selection, particularly against nonsense mutations. Recurrent within-host mutations, many of which coincide with known phylogenetic homoplasies, display a spectrum and patterns of purifying selection more suggestive of mutational hotspots than recombination or convergent evolution. While allele frequencies suggest that most samples result from infection by a single lineage, we identify multiple putative examples of co-infection. Integrating these results into an epidemiological inference framework, we find that while sharing of within-host variants between samples could help the reconstruction of transmission chains, mutational hotspots and rare cases of superinfection can confound these analyses.


The COVID-19 pandemic has had major health impacts across the globe. The scientific community has focused much attention on finding ways to monitor how the virus responsible for the pandemic, SARS-CoV-2, spreads. One option is to perform genetic tests, known as sequencing, on SARS-CoV-2 samples to determine the genetic code of the virus and to find any differences or mutations in the genes between the viral samples. Viruses mutate within their hosts and can develop into variants that are able to more easily transmit between hosts. Genetic sequencing can reveal how genetically similar two SARS-CoV-2 samples are. But tracking how SARS-CoV-2 moves from one person to the next through sequencing can be tricky. Even a sample of SARS-CoV-2 viruses from the same individual can display differences in their genetic material or within-host variants. Could genetic testing of within-host variants shed light on factors driving SARS-CoV-2 to evolve in humans? To get to the bottom of this, Tonkin-Hill, Martincorena et al. probed the genetics of SARS-CoV-2 within-host variants using 1,181 samples. The analyses revealed that 95.1% of samples contained within-host variants. A number of variants occurred frequently in many samples, which were consistent with mutational hotspots in the SARS-CoV-2 genome. In addition, within-host variants displayed mutation patterns that were similar to patterns found between infected individuals. The shared within-host variants between samples can help to reconstruct transmission chains. However, the observed mutational hotspots and the detection of multiple strains within an individual can make this challenging. These findings could be used to help predict how SARS-CoV-2 evolves in response to interventions such as vaccines. They also suggest that caution is needed when using information on within-host variants to determine transmission between individuals.


Subject(s)
COVID-19/genetics , COVID-19/physiopathology , Genetic Variation , Genome, Viral , Host-Pathogen Interactions/genetics , Mutation , SARS-CoV-2/genetics , Base Sequence , Humans , Pandemics , Phylogeny
14.
Stem Cells Dev ; 30(11): 578-586, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33757297

ABSTRACT

Copy number variants (CNVs) are genomic rearrangements implicated in numerous congenital and acquired diseases, including cancer. The appearance of culture-acquired CNVs in human pluripotent stem cells (PSCs) has prompted concerns for their use in regenerative medicine. A particular problem in PSC is the frequent occurrence of CNVs in the q11.21 region of chromosome 20. However, the exact mechanism of origin of this amplicon remains elusive due to the difficulty in delineating its sequence and breakpoints. Here, we have addressed this problem using long-read Nanopore sequencing of two examples of this CNV, present as duplication and as triplication. In both cases, the CNVs were arranged in a head-to-tail orientation, with microhomology sequences flanking or overlapping the proximal and distal breakpoints. These breakpoint signatures point to a mechanism of microhomology-mediated break-induced replication in CNV formation, with surrounding Alu sequences likely contributing to the instability of this genomic region.


Subject(s)
Nanopore Sequencing , Pluripotent Stem Cells , Chromosomes , DNA Copy Number Variations/genetics , DNA Repair , Humans
15.
G3 (Bethesda) ; 11(5)2021 05 07.
Article in English | MEDLINE | ID: mdl-33734373

ABSTRACT

Hermetia illucens L. (Diptera: Stratiomyidae), the Black Soldier Fly (BSF) is an increasingly important species for bioconversion of organic material into animal feed. We generated a high-quality chromosome-scale genome assembly of the BSF using Pacific Bioscience, 10X Genomics linked read and high-throughput chromosome conformation capture sequencing technology. Scaffolding the final assembly with Hi-C data produced a highly contiguous 1.01 Gb genome with 99.75% of scaffolds assembled into pseudochromosomes representing seven chromosomes with 16.01 Mb contig and 180.46 Mb scaffold N50 values. The highly complete genome obtained a Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness of 98.6%. We masked 67.32% of the genome as repetitive sequences and annotated a total of 16,478 protein-coding genes using the BRAKER2 pipeline. We analyzed an established lab population to investigate the genomic variation and architecture of the BSF revealing six autosomes and an X chromosome. Additionally, we estimated the inbreeding coefficient (1.9%) of the lab population by assessing runs of homozygosity. This provided evidence for inbreeding events including long runs of homozygosity on chromosome 5. The release of this novel chromosome-scale BSF genome assembly will provide an improved resource for further genomic studies, functional characterization of genes of interest and genetic modification of this economically important species.


Subject(s)
Chromosomes , Diptera , Animals , Chromosomes/genetics , Diptera/genetics , Genome , Genomics , Repetitive Sequences, Nucleic Acid
16.
J Magn Reson Imaging ; 54(3): 795-805, 2021 09.
Article in English | MEDLINE | ID: mdl-33619859

ABSTRACT

BACKGROUND: Contrast-enhanced magnetic resonance angiography (MRA) is used to assess various cardiovascular conditions. However, gadolinium-based contrast agents (GBCAs) carry a risk of dose-related adverse effects. PURPOSE: To develop a deep learning method to reduce GBCA dose by 80%. STUDY TYPE: Retrospective and prospective. POPULATION: A total of 1157 retrospective and 40 prospective congenital heart disease patients for training/validation and testing, respectively. FIELD STRENGTH/SEQUENCE: A 1.5 T, T1-weighted three-dimensional (3D) gradient echo. ASSESSMENT: A neural network was trained to enhance low-dose (LD) 3D MRA using retrospective synthetic data and tested with prospective LD data. Image quality for LD (LD-MRA), enhanced LD (ELD-MRA), and high-dose (HD-MRA) was assessed in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and a quantitative measure of edge sharpness and scored for perceptual sharpness and contrast on a 1-5 scale. Diagnostic confidence was assessed on a 1-3 scale. LD- and ELD-MRA were assessed against HD-MRA for sensitivity/specificity and agreement of vessel diameter measurements (aorta and pulmonary arteries). STATISTICAL TESTS: SNR, CNR, edge sharpness, and vessel diameters were compared between LD-, ELD-, and HD-MRA using one-way repeated measures analysis of variance with post-hoc t-tests. Perceptual quality and diagnostic confidence were compared using Friedman's test with post-hoc Wilcoxon signed-rank tests. Sensitivity/specificity was compared using McNemar's test. Agreement of vessel diameters was assessed using Bland-Altman analysis. RESULTS: SNR, CNR, edge sharpness, perceptual sharpness, and perceptual contrast were lower (P < 0.05) for LD-MRA compared to ELD-MRA and HD-MRA. SNR, CNR, edge sharpness, and perceptual contrast were comparable between ELD and HD-MRA, but perceptual sharpness was significantly lower. Sensitivity/specificity was 0.824/0.921 for LD-MRA and 0.882/0.960 for ELD-MRA. Diagnostic confidence was 2.72, 2.85, and 2.92 for LD, ELD, and HD-MRA, respectively (PLD-ELD , PLD-HD  < 0.05). Vessel diameter measurements were comparable, with biases of 0.238 (LD-MRA) and 0.278 mm (ELD-MRA). DATA CONCLUSION: Deep learning can improve contrast in LD cardiovascular MRA. LEVEL OF EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Contrast Media , Deep Learning , Humans , Imaging, Three-Dimensional , Magnetic Resonance Angiography , Prospective Studies , Reducing Agents , Retrospective Studies
17.
Wellcome Open Res ; 6: 162, 2021.
Article in English | MEDLINE | ID: mdl-35600244

ABSTRACT

We present a genome assembly from an individual male Arvicola amphibius (the European water vole; Chordata; Mammalia; Rodentia; Cricetidae). The genome sequence is 2.30 gigabases in span. The majority of the assembly is scaffolded into 18 chromosomal pseudomolecules, including the X sex chromosome. Gene annotation of this assembly on Ensembl has identified 21,394 protein coding genes.

18.
J Thorac Cardiovasc Surg ; 161(4): 1426-1434, 2021 04.
Article in English | MEDLINE | ID: mdl-32747130

ABSTRACT

OBJECTIVE: Early Fontan failure is a serious complication after total cavopulmonary connection, characterized by high central venous pressure, low cardiac output, and resistance to medical therapy. This study aimed to estimate postoperative central venous pressure in patients with total cavopulmonary connection using data routinely collected during preoperative assessment. We sought to determine if this metric correlated with measured postoperative central venous pressure and if it was associated with early Fontan failure. METHODS: In this retrospective study, central venous pressure in total cavopulmonary connection was estimated in 131 patients undergoing pre-total cavopulmonary connection assessment by cardiac magnetic resonance imaging and central venous pressure measurement under general anesthesia. Postoperative central venous pressure during the first 24 hours in the intensive care unit was collected from electronic patient records in a subset of patients. Early Fontan failure was defined as death, transplantation, total cavopulmonary connection takedown, or emergency fenestration within the first 30 days. RESULTS: Estimated central venous pressure in total cavopulmonary connection correlated significantly with central venous pressure during the first 24 hours in the intensive care unit (r = 0.26, P = .03), particularly in patients without a fenestration (r = 0.45, P = .01). Central venous pressure in total cavopulmonary connection was significantly associated with early Fontan failure (odds ratio, 1.1; 95% confidence interval, 1.01-1.21; P = .03). A threshold of central venous pressure in total cavopulmonary connection 33 mm Hg or greater was found to have the highest specificity (90%) and sensitivity (58%) for identifying early Fontan failure (area under receiver operating curve = 0.73; odds ratio, 12.4; 95% confidence interval, 2.5-62.3; P = .002). This association was stronger in patients with single superior vena cava. CONCLUSIONS: Estimated central venous pressure in total cavopulmonary connection is an easily calculated metric combining preoperative pressure and flow data. Higher central venous pressure in total cavopulmonary connection is associated with an increased risk of early Fontan failure and is correlated with directly measured post-total cavopulmonary connection pressure. Identification of patients at risk of early Fontan failure has the potential to guide risk-mitigation strategies.


Subject(s)
Central Venous Pressure/physiology , Fontan Procedure , Heart Defects, Congenital/physiopathology , Heart Defects, Congenital/surgery , Child, Preschool , Critical Care , Female , Humans , Infant , Length of Stay , Magnetic Resonance Imaging , Male , Retrospective Studies , Sensitivity and Specificity , Stroke Volume , Time Factors , Treatment Failure
19.
Wellcome Open Res ; 5: 27, 2020.
Article in English | MEDLINE | ID: mdl-33215047

ABSTRACT

We present a genome assembly from an individual male Sciurus carolinensis (the eastern grey squirrel; Vertebrata; Mammalia; Eutheria; Rodentia; Sciuridae). The genome sequence is 2.82 gigabases in span. The majority of the assembly (92.3%) is scaffolded into 21 chromosomal-level scaffolds, with both X and Y sex chromosomes assembled.

20.
Commun Biol ; 3(1): 656, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168940

ABSTRACT

Haemonchus contortus is a globally distributed and economically important gastrointestinal pathogen of small ruminants and has become a key nematode model for studying anthelmintic resistance and other parasite-specific traits among a wider group of parasites including major human pathogens. Here, we report using PacBio long-read and OpGen and 10X Genomics long-molecule methods to generate a highly contiguous 283.4 Mbp chromosome-scale genome assembly including a resolved sex chromosome for the MHco3(ISE).N1 isolate. We show a remarkable pattern of conservation of chromosome content with Caenorhabditis elegans, but almost no conservation of gene order. Short and long-read transcriptome sequencing allowed us to define coordinated transcriptional regulation throughout the parasite's life cycle and refine our understanding of cis- and trans-splicing. Finally, we provide a comprehensive picture of chromosome-wide genetic diversity both within a single isolate and globally. These data provide a high-quality comparison for understanding the evolution and genomics of Caenorhabditis and other nematodes and extend the experimental tractability of this model parasitic nematode in understanding helminth biology, drug discovery and vaccine development, as well as important adaptive traits such as drug resistance.


Subject(s)
Genome, Helminth/genetics , Haemonchus/genetics , Models, Biological , Transcriptome/genetics , Animals , Caenorhabditis elegans/genetics , Chromosomes/genetics , Female , Genomics , Haemonchiasis/parasitology , Haemonchus/metabolism , Haemonchus/physiology , Humans , Intestinal Diseases, Parasitic/parasitology , Life Cycle Stages/genetics , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...