Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
J Neurosci ; 39(40): 7840-7852, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31451581

ABSTRACT

Transient receptor potential melastatin 3 (TRPM3) is a nonselective cation channel that is inhibited by Gßγ subunits liberated following activation of Gαi/o protein-coupled receptors. Here, we demonstrate that TRPM3 channels are also inhibited by Gßγ released from Gαs and Gαq Activation of the Gs-coupled adenosine 2B receptor and the Gq-coupled muscarinic acetylcholine M1 receptor inhibited the activity of TRPM3 heterologously expressed in HEK293 cells. This inhibition was prevented when the Gßγ sink ßARK1-ct (C terminus of ß-adrenergic receptor kinase-1) was coexpressed with TRPM3. In neurons isolated from mouse dorsal root ganglion (DRG), native TRPM3 channels were inhibited by activating Gs-coupled prostaglandin-EP2 and Gq-coupled bradykinin B2 (BK2) receptors. The Gi/o inhibitor pertussis toxin and inhibitors of PKA and PKC had no effect on EP2- and BK2-mediated inhibition of TRPM3, demonstrating that the receptors did not act through Gαi/o or through the major protein kinases activated downstream of G-protein-coupled receptor (GPCR) activation. When DRG neurons were dialyzed with GRK2i, which sequesters free Gßγ protein, TRPM3 inhibition by EP2 and BK2 was significantly reduced. Intraplantar injections of EP2 or BK2 agonists inhibited both the nocifensive response evoked by TRPM3 agonists, and the heat hypersensitivity produced by Freund's Complete Adjuvant (FCA). Furthermore, FCA-induced heat hypersensitivity was completely reversed by the selective TRPM3 antagonist ononetin in WT mice and did not develop in Trpm3-/- mice. Our results demonstrate that TRPM3 is subject to promiscuous inhibition by Gßγ protein in heterologous expression systems, primary neurons and in vivo, and suggest a critical role for this ion channel in inflammatory heat hypersensitivity.SIGNIFICANCE STATEMENT The ion channel TRPM3 is widely expressed in the nervous system. Recent studies showed that Gαi/o-coupled GPCRs inhibit TRPM3 through a direct interaction between Gßγ subunits and TRPM3. Since Gßγ proteins can be liberated from other Gα subunits than Gαi/o, we examined whether activation of Gs- and Gq-coupled receptors also influence TRPM3 via Gßγ. Our results demonstrate that activation of Gs- and Gq-coupled GPCRs in recombinant cells and sensory neurons inhibits TRPM3 via Gßγ liberation. We also demonstrated that Gs- and Gq-coupled receptors inhibit TRPM3 in vivo, thereby reducing pain produced by activation of TRPM3, and inflammatory heat hypersensitivity. Our results identify Gßγ inhibition of TRPM3 as an effector mechanism shared by the major Gα subunits.


Subject(s)
GTP-Binding Protein beta Subunits/physiology , GTP-Binding Protein gamma Subunits/physiology , Receptors, G-Protein-Coupled/physiology , TRPM Cation Channels/physiology , Animals , Behavior, Animal , Female , GTP-Binding Protein beta Subunits/antagonists & inhibitors , GTP-Binding Protein gamma Subunits/antagonists & inhibitors , Ganglia, Spinal/cytology , Ganglia, Spinal/physiology , HEK293 Cells , Humans , Hyperalgesia/chemically induced , Hyperalgesia/physiopathology , Hyperalgesia/psychology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/physiology , Nociceptors/drug effects , Pertussis Toxin/pharmacology , Receptor, Adenosine A2B/physiology , Receptor, Muscarinic M1/physiology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Signal Transduction/physiology , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/genetics
3.
Elife ; 62017 08 15.
Article in English | MEDLINE | ID: mdl-28826490

ABSTRACT

Transient receptor potential (TRP) ion channels in peripheral sensory neurons are functionally regulated by hydrolysis of the phosphoinositide PI(4,5)P2 and changes in the level of protein kinase mediated phosphorylation following activation of various G protein coupled receptors. We now show that the activity of TRPM3 expressed in mouse dorsal root ganglion (DRG) neurons is inhibited by agonists of the Gi-coupled µ opioid, GABA-B and NPY receptors. These agonist effects are mediated by direct inhibition of TRPM3 by Gßγ subunits, rather than by a canonical cAMP mediated mechanism. The activity of TRPM3 in DRG neurons is also negatively modulated by tonic, constitutive GPCR activity as TRPM3 responses can be potentiated by GPCR inverse agonists. GPCR regulation of TRPM3 is also seen in vivo where Gi/o GPCRs agonists inhibited and inverse agonists potentiated TRPM3 mediated nociceptive behavioural responses.


Subject(s)
GTP-Binding Protein beta Subunits/antagonists & inhibitors , GTP-Binding Protein gamma Subunits/antagonists & inhibitors , Ion Channels/drug effects , Sensory Receptor Cells/drug effects , TRPM Cation Channels/drug effects , Analgesics, Opioid/antagonists & inhibitors , Animals , Baclofen/antagonists & inhibitors , CHO Cells , Calcium/analysis , Capsaicin , Cricetulus , Electrophysiology/methods , Female , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Ganglia, Spinal/metabolism , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Morphine/antagonists & inhibitors , Pain/metabolism , Pain Measurement , Phosphatidylinositols/metabolism , Receptor, Cannabinoid, CB1/agonists , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
4.
Nat Commun ; 6: 7150, 2015 May 22.
Article in English | MEDLINE | ID: mdl-25998021

ABSTRACT

Specific peripheral sensory neurons respond to increases in extracellular osmolality but the mechanism responsible for excitation is unknown. Here we show that small increases in osmolality excite isolated mouse dorsal root ganglion (DRG) and trigeminal ganglion (TG) neurons expressing the cold-sensitive TRPM8 channel (transient receptor potential channel, subfamily M, member 8). Hyperosmotic responses were abolished by TRPM8 antagonists, and were absent in DRG and TG neurons isolated from Trpm8(-/-) mice. Heterologously expressed TRPM8 was activated by increased osmolality around physiological levels and inhibited by reduced osmolality. Electrophysiological studies in a mouse corneal preparation demonstrated that osmolality regulated the electrical activity of TRPM8-expressing corneal afferent neurons. Finally, the frequency of eye blinks was reduced in Trpm8(-/-) compared with wild-type mice and topical administration of a TRPM8 antagonist reduced blinking in wild-type mice. Our findings identify TRPM8 as a peripheral osmosensor responsible for the regulation of normal eye-blinking in mice.


Subject(s)
Blinking , Sensory Receptor Cells/physiology , TRPM Cation Channels/physiology , Action Potentials , Animals , CHO Cells , Cold Temperature , Cornea/physiology , Cricetinae , Cricetulus , Female , Male , Mice , Mice, Knockout , Osmolar Concentration
5.
Pharmacol Res Perspect ; 3(6): e00191, 2015 Dec.
Article in English | MEDLINE | ID: mdl-27022465

ABSTRACT

Transient receptor potential ankyrin 1 (TRPA1) is a sensor of nociceptive stimuli, expressed predominantly in a subpopulation of peptidergic sensory neurons which co-express the noxious heat-sensor transient receptor potential vanilloid 1. In this study, we describe a spinal cord synaptosome-calcitonin gene-related peptide (CGRP) release assay for examining activation of TRPA1 natively expressed on the central terminals of dorsal root ganglion neurons. We have shown for the first time that activation of TRPA1 channels expressed on spinal cord synaptosomes by a selection of agonists evokes a concentration-dependent release of CGRP which is inhibited by TRPA1 antagonists. In addition, our results demonstrate that depolarization of spinal cord synaptosomes by a high concentration of KCl induces CGRP release via a T-type calcium channel-dependent mechanism whilst TRPA1-induced CGRP release functions independently of voltage-gated calcium channel activation. Finally, we have shown that pre-treatment of synaptosomes with the opioid agonist, morphine, results in a reduction of depolarization-induced CGRP release. This study has demonstrated the use of a dorsal spinal cord homogenate assay for investigation of natively expressed TRPA1 channels and for modulation of depolarizing stimuli at the level of the dorsal spinal cord.

6.
Handb Exp Pharmacol ; 222: 207-45, 2014.
Article in English | MEDLINE | ID: mdl-24756708

ABSTRACT

TRPV1 is a well-characterised channel expressed by a subset of peripheral sensory neurons involved in pain sensation and also at a number of other neuronal and non-neuronal sites in the mammalian body. Functionally, TRPV1 acts as a sensor for noxious heat (greater than ~42 °C). It can also be activated by some endogenous lipid-derived molecules, acidic solutions (pH < 6.5) and some pungent chemicals and food ingredients such as capsaicin, as well as by toxins such as resiniferatoxin and vanillotoxins. Structurally, TRPV1 subunits have six transmembrane (TM) domains with intracellular N- (containing 6 ankyrin-like repeats) and C-termini and a pore region between TM5 and TM6 containing sites that are important for channel activation and ion selectivity. The N- and C- termini have residues and regions that are sites for phosphorylation/dephosphorylation and PI(4,5)P2 binding, which regulate TRPV1 sensitivity and membrane insertion. The channel has several interacting proteins, some of which (e.g. AKAP79/150) are important for TRPV1 phosphorylation. Four TRPV1 subunits form a non-selective, outwardly rectifying ion channel permeable to monovalent and divalent cations with a single-channel conductance of 50-100 pS. TRPV1 channel kinetics reveal multiple open and closed states, and several models for channel activation by voltage, ligand binding and temperature have been proposed. Studies with TRPV1 agonists and antagonists and Trpv1 (-/-) mice have suggested a role for TRPV1 in pain, thermoregulation and osmoregulation, as well as in cough and overactive bladder. TRPV1 antagonists have advanced to clinical trials where findings of drug-induced hyperthermia and loss of heat sensitivity have raised questions about the viability of this therapeutic approach.


Subject(s)
TRPV Cation Channels/metabolism , Animals , Gene Expression Regulation , Genotype , Humans , Ion Channel Gating , Membrane Potentials , Mice , Mice, Knockout , Phenotype , Phosphatidylinositols/metabolism , Phosphorylation , Protein Conformation , Protein Processing, Post-Translational , Protein Transport , Signal Transduction , Structure-Activity Relationship , TRPV Cation Channels/chemistry , TRPV Cation Channels/deficiency , TRPV Cation Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...