Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oral Dis ; 29(7): 2845-2853, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36458549

ABSTRACT

OBJECTIVES: Current methods for periodontal regeneration do not promote collagen fiber insertions into new bone and cementum. We used a pig wound model to screen different functionalized collagen membranes in promoting periodontal reattachment to root surfaces. METHODS: Treatment groups included (1) control with no membranes, (2) collagen-coated membranes, (3) membranes with insulin-like growth factor-1 (IGF-1), (4) membranes with amelotin, or (5) membranes attached with calcium phosphate cement (CPC), or with CPC combined with IGF-1. Flap procedures were performed on mandibular and maxillary premolars of each pig. RESULTS: Histomorphometric, micro-CT, and clinical measurements obtained at 4 and 12 weeks after surgery showed cementum formation on denuded roots and reformation of alveolar bone, indicating that the pig model can model healing responses in periodontal regeneration. Calcium phosphate cement simplified procedures by eliminating the need for sutures and improved regeneration of alveolar bone (p < 0.05) compared with other treatments. There was a reduction (p < 0.05) of PD only for the IGF group. Large observed variances between treatment groups indicated that a priori power analyses should be conducted to optimize statistical analysis. CONCLUSIONS: Pigs can model discrete elements of periodontal healing using collagen-based, functionalized membranes. Screening indicates that membrane anchorage with calcium phosphate cements improve regeneration of alveolar bone.


Subject(s)
Alveolar Bone Loss , Insulin-Like Growth Factor I , Animals , Swine , Bone Regeneration , Collagen , Dental Cementum , Calcium Phosphates/pharmacology , Guided Tissue Regeneration, Periodontal/methods , Periodontal Ligament , Alveolar Bone Loss/drug therapy
2.
Biomacromolecules ; 22(7): 2996-3004, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34152724

ABSTRACT

The extracellular matrix of hard connective tissues is composed primarily of mineralized collagen fibrils. Acidic noncollagenous proteins play important roles in mediating mineralization of collagen. Polyaspartate, a homopolymer substitute for such proteins, has been used extensively in in vitro models to produce biomimetic mineralized collagen. Polyglutamate behaves differently in mineralization models, despite its chemical similarity. We show that polyaspartate is a 350 times more effective inhibitor of solution precipitation of hydroxyapatite than polyglutamate. Supersaturated CaP solutions stabilized with polyaspartic acid produce collagen with aligned intrafibrillar mineral, while solutions containing polyglutamate lead to the formation of unaligned mineral clusters on the fibril surface. Molecular analysis showed that the commercial polyaspartic acid contains substantial isomerization, unlike polyglutamic acid. Hence, the secondary structure of polyaspartic acid is more disordered than that of polyglutamic acid. The increased flexibility of the polyaspartic acid chain may explain its potency as an inhibitor of solution crystallization and a mediator of intrafibrillar collagen mineralization.


Subject(s)
Biomimetics , Polyglutamic Acid , Collagen , Extracellular Matrix , Isomerism
3.
J R Soc Interface ; 15(147)2018 10 17.
Article in English | MEDLINE | ID: mdl-30333243

ABSTRACT

Formation of hydroxyapatite (HAP) within collagen fibrils, as found in bone, dentine and cementum, is thought to be mediated by proteins rich in aspartate (Asp) and glutamate such as osteopontin and bone sialoprotein, respectively. Indeed polyaspartate (pAsp), a homopolymer analogue of such proteins, has been shown to induce intrafibrillar mineralization of collagen from solutions of calcium and phosphate that are supersaturated with respect to HAP. To elucidate the role of pAsp in mineralization of collagen, we explored the effect of pAsp chain length on in vitro HAP deposition in demineralized mouse periodontal tissue sections. Through characterization of both tissue sections and mineralizing solution, we show that chain length contributes to the effectiveness of pAsp in mediating intrafibrillar mineralization. This function appears to be associated with inhibition of otherwise kinetically favoured crystallization in the bulk solution, which allows for intrafibrillar crystallization, though this does not preclude the possibility of a more active role for pAsp in addition. Inhibition of crystallization in solution by pAsp occurs by slowing the growth of amorphous calcium phosphate and stabilization of this phase, rather than by sequestration of Ca2+ ions. These results suggest that the length of Asp-rich sequences of mineralizing proteins may be essential to their function, and could also be useful in optimization of mineralized tissue replacement synthesis.


Subject(s)
Calcification, Physiologic , Collagen/metabolism , Durapatite/metabolism , Peptides/chemistry , Animals , Biomimetics , Calcium/chemistry , Calcium/metabolism , Collagen/chemistry , Durapatite/chemistry , Dynamic Light Scattering , Extracellular Matrix , Mice
4.
Bone ; 77: 42-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25892483

ABSTRACT

The structure of the mineralized collagen fibril, which is the basic building block of mineralized connective tissues, is critical to its function. We use cryo-TEM to study collagen structure at a well-defined hard-soft tissue interface, across which collagen fibrils are continuous, in order to evaluate changes to collagen upon mineralization. To establish a basis for the analysis of collagen banding, we compared cryo-TEM images of rat-tail tendon collagen to a model based on the X-ray structure. While there is close correspondence of periodicity, differences in band intensity indicate fibril regions with high density but lacking order, providing new insight into collagen fibrillar structure. Across a mineralized interface, we show that mineralization results in an axial contraction of the fibril, concomitant with lateral expansion, and that this contraction occurs only in the more flexible gap region of the fibril. Nevertheless, the major features of the banding pattern are not significantly changed, indicating that the axial arrangement of molecules remains largely intact. These results suggest a mechanism by which collagen fibrils are able to accommodate large amounts of mineral without significant disruption of their molecular packing, leading to synergy of mechanical properties.


Subject(s)
Collagen/ultrastructure , Cryoelectron Microscopy/methods , Microscopy, Electron, Transmission/methods , Minerals/chemistry , Animals , Collagen/chemistry , Dental Cementum , Dentin , Male , Mice , Periodontal Ligament , Protein Conformation , X-Ray Diffraction
5.
Methods Enzymol ; 532: 189-205, 2013.
Article in English | MEDLINE | ID: mdl-24188768

ABSTRACT

Fibrillar collagens are important structural proteins and are known to be closely associated with mineral in the case of mineralized tissues. However, the precise role of collagen in the mineralization process remains unclear, and the evaluation of structural differences in collagen from mineralized and nonmineralized tissues may be instructive in this regard. Here, we review the use of cryo-transmission electron microscopy to investigate the axial structure of collagen fibrils in tissue sections from both mineralizing and nonmineralizing tissues. By examining collagen fibrillar structure in an unstained frozen-hydrated state, it is possible to avoid artifacts normally associated with staining and dehydration that are required for conventional TEM. We describe both sample preparation and image analysis with emphasis on the particular challenges of using image averaging techniques, which can be used to overcome the low signal-to-noise ratio that is inherent in this technique. Detailed banding patterns can be obtained from averaged images, and these can be analyzed to obtain quantitative information on fibril periodicity and structure.


Subject(s)
Fibrillar Collagens/ultrastructure , Animals , Cryoelectron Microscopy , Dentin/ultrastructure , Frozen Sections , Male , Mice , Microscopy, Electron, Transmission , Periodontal Ligament/ultrastructure , Rats , Rats, Wistar , Skin/ultrastructure , Tendons/ultrastructure , Vitrification
SELECTION OF CITATIONS
SEARCH DETAIL
...