Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 31(12): 3644-52, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25760309

ABSTRACT

Bismuth telluride (Bi2Te3) is a well-known thermoelectric material that has a layered crystal structure. Exfoliating Bi2Te3 to produce two-dimensional (2D) nanosheets is extremely important because the exfoliated nanosheets possess unique properties, which can potentially revolutionize several material technologies such as thermoelectrics, heterogeneous catalysts, and infrared detectors. In this work, ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) is used to exfoliate Bi2Te3 nanoplatelets. In both experiments and in molecular dynamics (MD) simulations, the Bi2Te3 nanoplatelets yield a stable dispersion of 2D nanosheets in the IL solvent, and our MD simulations provide molecular-level insight into the kinetics and thermodynamics of the exfoliation process. An analysis of the dynamics of Bi2Te3 during exfoliation indicates that the relative translation (sliding apart) of adjacent layers caused by IL-induced forces plays an important role in the process. Moreover, an evaluation of the MD trajectories and electrostatic interactions indicates that the [C4mim](+) cation is primarily responsible for initiating Bi2Te3 layer sliding and separation, while the Cl(-) anion is less active. Overall, our combined experimental and computational investigation highlights the effectiveness of IL-assisted exfoliation, and the underlying molecular-level insights should accelerate the development of future exfoliation techniques for producing 2D chalcogenide materials.

2.
Mater Sci Eng C Mater Biol Appl ; 43: 102-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25175194

ABSTRACT

The present work is a first trial to introduce activated carbon fibers (ACF) with high adsorption capacity into poly(lactic-co-glycolic) acid (PLGA), resulting in a novel kind of scaffolds for tissue engineering applications. ACF, prepared via high-temperature processing of carbon fibers, are considered to possess bioactivity and biocompatibility. The ACF/PLGA composite scaffolds are prepared by solvent casting/particulate leaching method. Increments in both pore quantity and quality over the surface of ACF as well as a robust combination between ACF and PLGA matrix are observed via scanning electron microscopy (SEM). The high adsorption capacity of ACF is confirmed by methylene blue solution absorbency test. The surfaces of ACF are affiliated with many hydrophilic groups and characterized by Fourier transform infrared spectroscopy. Furthermore, the SEM images show that cells possess a favorable spreading morphology on the ACF/PLGA scaffolds. Besides, vivo experiments are also carried out to evaluate the histocompatibility of the composite scaffolds. The results show that ACF have the potential to become one of the most promising materials in biological fields.


Subject(s)
Carbon , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Tissue Scaffolds , Adsorption , Animals , Cell Line , Mice , Microscopy, Electron, Scanning , Polylactic Acid-Polyglycolic Acid Copolymer , Spectroscopy, Fourier Transform Infrared , Tissue Engineering
3.
Phys Chem Chem Phys ; 16(23): 11297-302, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24789217

ABSTRACT

We demonstrate a facile technique to assemble solution phase-synthesized bismuth telluride (Bi2Te3) nanoplatelets into arrays of micropatterns. Aminosilane self-assembled monolayers (SAMs) are printed on silicon dioxide (SiO2) substrates using microcontact printing (µCP). The SAM printed surfaces are terminated with amine-groups allowing Bi2Te3 nanoplatelet selective adsorption by electrostatic attraction. Using Kelvin probe force microscopy, the electrical potential difference between aminosilane SAM and Bi2Te3 nanoplatelet surfaces is found to be ∼650 mV, which is larger than that (∼400 mV) between the SiO2 substrate and Bi2Te3 nanoplatelet surfaces. The selective adsorption provides an opportunity for integrating solution phase-grown topological insulators toward several device-level applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...