Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(18): e202320152, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38437457

ABSTRACT

Dopant-free hole transporting materials (HTMs) is significant to the stability of perovskite solar cells (PSCs). Here, we developed a novel star-shape arylamine HTM, termed Py-DB, with a pyrene core and carbon-carbon double bonds as the bridge units. Compared to the reference HTM (termed Py-C), the extension of the planar conjugation backbone endows Py-DB with typical intermolecular π-π stacking interactions and excellent solubility, resulting in improved hole mobility and film morphology. In addition, the lower HOMO energy level of the Py-DB HTM provides efficient hole extraction with reduced energy loss at the perovskite/HTM interface. Consequently, an impressive power conversion efficiency (PCE) of 24.33 % was achieved for dopant-free Py-DB-based PSCs, which is the highest PCE for dopant-free small molecular HTMs in n-i-p configured PSCs. The dopant-free Py-DB-based device also exhibits improved long-term stability, retaining over 90 % of its initial efficiency after 1000 h exposure to 25 % humidity at 60 °C. These findings provide valuable insights and approaches for the further development of dopant-free HTMs for efficient and reliable PSCs.

2.
Cell Death Dis ; 12(4): 286, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731668

ABSTRACT

p97/VCP, an evolutionarily concerned ATPase, partakes in multiple cellular proteostatic processes, including the endoplasmic reticulum (ER)-associated protein degradation (ERAD). Elevated expression of p97 is common in many cancers and is often associated with poor survival. Here we report that the levels of p97 positively correlated with the histological grade, tumor size, and lymph node metastasis in breast cancers. We further examined p97 expression in the stem-like cancer cells or cancer stem cells (CSCs), a cell population that purportedly underscores cancer initiation, therapeutic resistance, and recurrence. We found that p97 was consistently at a higher level in the CD44+/CD24-, ALDH+, or PKH26+ CSC populations than the respective non-CSC populations in human breast cancer tissues and cancer cell lines and p97 expression also positively correlated with that of SOX2, another CSC marker. To assess the role of p97 in breast cancers, cancer proliferation, mammosphere, and orthotopic growth were analyzed. Similarly as p97 depletion, two pharmacological inhibitors, which targets the ER-associated p97 or globally inhibits p97's ATPase activity, markedly reduced cancer growth and the CSC population. Importantly, depletion or inhibition of p97 greatly suppressed the proliferation of the ALDH+ CSCs and the CSC-enriched mammospheres, while exhibiting much less or insignificant inhibitory effects on the non-CSC cancer cells. Comparable phenotypes produced by blocking ERAD suggest that ER proteostasis is essential for the CSC integrity. Loss of p97 gravely activated the unfolded protein response (UPR) and modulated the expression of multiple stemness and pluripotency regulators, including C/EBPδ, c-MYC, SOX2, and SKP2, which collectively contributed to the demise of CSCs. In summary, p97 controls the breast CSC integrity through multiple targets, many of which directly affect cancer stemness and are induced by UPR activation. Our findings highlight the importance of p97 and ER proteostasis in CSC biology and anticancer therapy.


Subject(s)
Breast Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Unfolded Protein Response/immunology , Valosin Containing Protein/metabolism , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude
3.
Sci Rep ; 8(1): 4981, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29563563

ABSTRACT

The unfolded protein response (UPR) is activated, when the folding capacity is compromised in the endoplasmic reticulum (ER). To date, most studies focused on the coding genes and microRNAs in UPR. Other non-coding RNAs affected by UPR and their roles in UPR have not been systematically studied. Long noncoding RNAs (lncRNAs) are increasingly recognized as powerful epigenetic regulators. In this study, we transcriptomically profiled the lncRNAs and mRNAs from mouse embryonic fibroblasts under ER stress, and identified many differentially expressed lncRNAs and mRNAs. Genomic location and mRNA-lncRNA co-expression analyses predicted a number of lncRNAs, which potentially regulate the expression of UPR genes. In particular, FR229754, an exonic sense lncRNA, is significantly up-regulated in UPR. FR229754 overlaps with Sel1l, and their expressions correlated with each other. Sel1l is involved in the ER-associated protein degradation. Silencing of FR229754 did not much affect the expression of Sel1l, but markedly reduced the levels of BiP/GRP78/Hspa5, a major ER chaperon up-regulated in UPR. Probing with pathway-specific inhibitors showed that up-regulation of FR229754 and Sel1 depended on the activation of PERK. Together, our study identified a number of candidate lncRNAs and paved the way for future characterization of their functions in UPR.


Subject(s)
Endoplasmic Reticulum/metabolism , RNA, Long Noncoding/metabolism , Unfolded Protein Response/genetics , Animals , Cells, Cultured , Embryo, Mammalian , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Female , Fibroblasts , Gene Expression Profiling , Gene Regulatory Networks/genetics , Male , Mice , Mice, Inbred C57BL , Primary Cell Culture , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Specific Pathogen-Free Organisms , Up-Regulation
4.
Exp Cell Res ; 367(2): 170-185, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29601799

ABSTRACT

The unfolded protein response (UPR) is widely activated in cancers. The mammalian UPR encompasses three signaling branches, namely inositol-requiring enzyme-1α (IRE1α), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and activating transcription factor 6α (ATF6α). The functional significance of each branch in tumorigenesis is incompletely understood, especially in cancer stem cells (CSCs). Here, we report that inhibition and silencing of the three UPR sensors has differential effects on breast cancer growth and the CSC population. The levels of PERK and ATF6α strongly correlate with the expression of sex determining region Y (SRY)-box 2 (SOX2), a pluripotency regulator, in human breast cancer tissues. UPR activation is also elevated in the CSC-enriched mammospheres. Inhibition of the UPR sensors or excess ER stress markedly reduces the formation and maintenance of mammospheres, suggesting that an appropriate level of UPR activation is critical for the CSC survival. Mechanistically, transcription factors from UPR and pluripotency pathways interact and reciprocally influence each other. A transcription modulator, CCAAT-enhancer-binding protein delta (C/EBPδ), interacts with pluripotency regulator, SOX2, and UPR transcription factors, thus likely serving as a link to coordinate UPR and pluripotency maintenance in CSCs. Our findings demonstrate that UPR is critical for both cancer growth and pluripotency, and highlight the differential role and complexity of the three UPR branches in tumorigenesis.


Subject(s)
Breast Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Unfolded Protein Response , Animals , Breast Neoplasms/metabolism , CCAAT-Enhancer-Binding Protein-delta/metabolism , Cell Line, Tumor , Cell Proliferation , Female , Mice, Inbred BALB C , Mice, Nude , Pluripotent Stem Cells/metabolism , Transcription Factors/metabolism
5.
Asian Pac J Cancer Prev ; 16(10): 4435-8, 2015.
Article in English | MEDLINE | ID: mdl-26028110

ABSTRACT

p21 is a cyclin-dependent kinase inhibitor, which can arrest cell proliferation and serve as a tumor suppressor. Though many studies were published to assess the relationship between p21 rs1059234 polymorphism and various cancer risks, there was no definite conclusion on this association. To derive a more precise quantitative assessment of the relationship, a large scale meta-analysis of 5,963 cases and 8,405 controls from 16 eligible published case-control studies was performed. Our analysis suggested that rs1059234 was not associated with the integral cancer risk for both dominant model [(T/T+C/T) vs C/C, OR=1.00, 95% CI: 0.84-1.18] and recessive model [T/T vs (C/C+C/T), OR=1.03, 95% CI: 0.93-1.15)]. However, further stratified analysis showed rs1059234 was greatly associated with the risk of squamous cell carcinoma of head and neck (SCCHN). Thus, larger scale primary studies are still required to further evaluate the interaction of p21 rs1059234 polymorphism and cancer risk in specific cancer subtypes.


Subject(s)
Carcinoma, Squamous Cell/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Neoplasms/genetics , Head and Neck Neoplasms/genetics , Humans , Polymorphism, Single Nucleotide , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...