Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pulm Med ; 23(1): 213, 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37330482

ABSTRACT

BACKGROUND: Mitochondrial dysfunction results in poor organ quality, negatively affecting the outcomes of lung transplantation. Whether hydrogen benefits mitochondrial function in cold-preserved donors remain unclear. The present study assessed the effect of hydrogen on mitochondrial dysfunction in donor lung injury during cold ischemia phase (CIP) and explored the underlying regulatory mechanism. METHODS: Left donor lungs were inflated using 40% oxygen + 60% nitrogen (O group), or 3% hydrogen + 40% oxygen + 57% nitrogen (H group). Donor lungs were deflated in the control group and were harvested immediately after perfusion in the sham group (n = 10). Inflammation, oxidative stress, apoptosis, histological changes, mitochondrial energy metabolism, and mitochondrial structure and function were assessed. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were also analyzed. RESULTS: Compared with the sham group, inflammatory response, oxidative stress, histopathological changes, and mitochondrial damage were severe in the other three groups. However, these injury indexes were remarkably decreased in O and H groups, with increased Nrf2 and HO-1 levels, elevated mitochondrial biosynthesis, inhibition of anaerobic glycolysis and restored mitochondrial structure and function compared with the control group. Moreover, inflation using hydrogen contributed to stronger protection against mitochondrial dysfunction and higher levels of Nrf2 and HO-1 when comparing with O group. CONCLUSIONS: Lung inflation using hydrogen during CIP may improve donor lung quality by mitigating mitochondrial structural anomalies, enhancing mitochondrial function, and alleviating oxidative stress, inflammation, and apoptosis, which may be achieved through activation of the Nrf2/HO-1 pathway.


Subject(s)
Cold Ischemia , Reperfusion Injury , Humans , Cold Ischemia/methods , Hydrogen/pharmacology , NF-E2-Related Factor 2/metabolism , Lung/pathology , Oxidative Stress , Heme Oxygenase-1 , Oxygen/metabolism , Apoptosis , Inflammation/metabolism
2.
Brain Res ; 1785: 147892, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35341732

ABSTRACT

Inclinicalpractice, high-voltage, long-duration pulsed radiofrequency (HL-PRF) is effective for several types of intractable neuropathic pain (NP), but the mechanisms have not been well explored. Cav2.2 channels could increase neuronal excitability and neurotransmission accompanying NP. This study investigated the relationship of the efficacy of HL-PRF on NP with the levels of Cav2.2 in the spinal dorsal horn (SDH) and dorsal root ganglions (DRGs) of chronic constriction injury (CCI) in rats. Sham HL-PRF, GVIA (a specific Cav2.2 channel blocker), HL-PRF, or GVIA + HL-PRF was applied to CCI rats. The results showed: compared with the sham group, the PWT and PWL of CCI rats decreased significantly (P < 0.05), and Cav2.2 expression was elevated significantly in the SDH and DRGs (P < 0.05). Compared with the CCI group, both HL-PRF and ω-conotoxin GVIA treatment reversed the increased PWT and PWL (P < 0.05) and downregulated the overexpression of Cav2.2 in the SDH and DRGs (P < 0.05). Furthermore, PWT, PWL, and the expression of Cav2.2 in the SDH and DRGs were not significantly different among the 3 treatment groups. HL-PRF on L5 DRG reversed the hyperalgesia behavior of NP and reduced the levels of Cav2.2 in the ipsilateral SDH and DRGs in CCI rats. Moreover, the underlying mechanism may be related to the downregulation of CaV2.2 protein levels in both SDH and DRG.


Subject(s)
Calcium Channels, N-Type/metabolism , Crush Injuries , Neuralgia , Pulsed Radiofrequency Treatment , Animals , Crush Injuries/metabolism , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Hyperalgesia/therapy , Neuralgia/metabolism , Neuralgia/therapy , Pulsed Radiofrequency Treatment/methods , Rats , Rats, Sprague-Dawley , Spinal Cord Dorsal Horn/metabolism
3.
Biomed Res Int ; 2021: 8883800, 2021.
Article in English | MEDLINE | ID: mdl-33829065

ABSTRACT

This study is to study the expression of CXCRs in ovarian cancer tissues and their value in prognosis. The expressions of CXCR1-CXCR7 mRNA between ovarian tumor tissues and normal tissues and in different pathological types of ovarian tumor tissues were compared by ONCOMINE online tool. The relationship between the expression of CXCRs and clinical pathological staging was studied by GEPIA. Kaplan-Meier plotter online tool was used to analyze prognosis. Finally, GO and KEGG analyses and protein interaction network analysis were performed for CXCRs by the DAVID software to predict their function, and cBioPortal was used to identify the key functional genes. The expression of CXCR3/4/7 mRNA in ovarian cancer tissues was higher than that in normal ovarian tissues, and the expression of CXCR4 was the highest (fold change = 306.413, P < 0.05). The expression of CXCR1/2/3/4/7 mRNA in different pathological types of ovarian tumors was significantly different (P < 0.05). Only CXCR5 expression level was associated with tumor staging. Survival analysis showed that high CXCR7 mRNA expression and low CXCR5/6 expression were associated with the shortening of overall survival. High CXCR4/7 expression and low CXCR5/6 expression were associated with the shortening of progression-free survival. High CXCR2/4 expression and low CXCR5/6 expression were closely related to the shortening of postprogressing survival. Protein interaction network analysis showed that GNB1, PTK2, MAPK1, PIK3CA, GNB4, GNA11, KNG1, and ARNT proteins were closely related to the CXC receptor family. CXCR3/4/7 are potential therapeutic targets, and CXCR2/4/5/6/7 are new markers for the prognosis of ovarian cancer.


Subject(s)
Biomarkers, Tumor/genetics , Computational Biology , Molecular Targeted Therapy , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Biomarkers, Tumor/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Ontology , Gene Regulatory Networks , Humans , Kaplan-Meier Estimate , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/pathology , Ovary/metabolism , Ovary/pathology , Prognosis , Protein Interaction Maps/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, CXCR/genetics , Receptors, CXCR/metabolism , Software
4.
Exp Biol Med (Maywood) ; 246(12): 1410-1418, 2021 06.
Article in English | MEDLINE | ID: mdl-33899545

ABSTRACT

Lung grafts may experience multiple injuries during lung transplantation, such as warm ischaemia, cold ischaemia, and reperfusion injury. These injuries all contribute to primary graft dysfunction, which is a major cause of morbidity and mortality after lung transplantation. As a potential selective antioxidant, hydrogen molecule (H2) protects against post-transplant complications in animal models of multiple organ transplantation. Herein, the authors review the current literature regarding the effects of H2 on lung injury from lung transplantation. The reviewed studies showed that H2 improved the outcomes of lung transplantation by decreasing oxidative stress and inflammation at the donor and recipient phases. H2 is primarily administered via inhalation, drinking hydrogen-rich water, hydrogen-rich saline injection, or a hydrogen-rich water bath. H2 favorably modulates signal transduction and gene expression, resulting in the suppression of pro-inflammatory cytokines and excess reactive oxygen species production. Although H2 appears to be a physiological regulatory molecule with antioxidant, anti-inflammatory and anti-apoptotic properties, its exact mechanisms of action remain elusive. Taken together, accumulating experimental evidence indicates that H2 can significantly alleviate transplantation-related lung injury, mainly via inhibition of inflammatory cytokine secretion and reduction in oxidative stress through several underlying mechanisms. Further animal experiments and preliminary human clinical trials will lay the foundation for the use of H2 as a treatment in the clinic.


Subject(s)
Hydrogen/pharmacology , Lung Injury/drug therapy , Lung Transplantation/adverse effects , Lung/drug effects , Animals , Humans , Inflammation/drug therapy , Oxidative Stress/drug effects
5.
Mol Ther Nucleic Acids ; 20: 621-638, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32353736

ABSTRACT

Ovarian cancer (OC) is a severe malignancy featuring a poor prognosis due to rapid metastasis and chemotherapy resistance. In this study, we extensively investigated the upstream and downstream mechanisms of miR-548e in regulating OC progression and cisplatin resistance. Our results indicated that ZFAS1 was highly expressed and promoted OC cell proliferation, migration, invasion, and cisplatin resistance by directly suppressing miR-548e expression. ZFAS1 co-localized with miR-548e in the cytosols of OC cells. miR-548e repressed CXCR4 expression, and elevated CXCR4 expression promoted OC cell proliferation, migration, invasion, and cisplatin resistance. Cisplatin resistance induced by ZFAS1 and CXCR4 overexpression in OC cells was mediated by their suppression on let-7a and elevation of BCL-XL/S expression. ZFAS1 knockdown and miR-548e and let-7a overexpression impaired cisplatin resistance and suppressed lung metastatic nodule formation in nude mice. In conclusion, ZFAS1 binds with miR-548e to enhance CXCR4 expression to promote OC cell proliferation and metastasis, which also enhances cisplatin resistance by suppressing let-7a and elevating BCL-XL/S protein expression.

SELECTION OF CITATIONS
SEARCH DETAIL
...