Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 21022, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36471155

ABSTRACT

The Alzheimer's disease-associated peptide amyloid-beta (Aß) has been associated with neuronal hyperactivity under anesthesia, but clinical trials of anticonvulsants or neural system suppressors have, so far, failed to improve symptoms in AD. Using simultaneous hippocampal calcium imaging and electrophysiology in freely moving mice expressing human Aß, here we show that Aß aggregates perturbed neural systems in a state-dependent fashion, driving neuronal hyperactivity in exploratory behavior and slow wave sleep (SWS), yet suppressing activity in quiet wakefulness (QW) and REM sleep. In exploratory behavior and REM sleep, Aß impaired hippocampal theta-gamma phase-amplitude coupling and altered neuronal synchronization with theta. In SWS, Aß reduced cortical slow oscillation (SO) power, the coordination of hippocampal sharp wave-ripples with both the SO and thalamocortical spindles, and the coordination of calcium transients with the sharp wave-ripple. Physostigmine improved Aß-associated hyperactivity in exploratory behavior and hypoactivity in QW and expanded the range of gamma that coupled with theta phase, but exacerbated hypoactivity in exploratory behavior. Together, these findings show that the effects of Aß alone on hippocampal circuit function are profoundly state dependent and suggest a reformulation of therapeutic strategies aimed at Aß induced hyperexcitability.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Hippocampus , Animals , Humans , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Calcium/metabolism , Disease Models, Animal , Hippocampus/physiopathology , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...