Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 10(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786707

ABSTRACT

Talaromyces sp. DC2 is an endophytic fungus that was isolated from the stem of Catharanthus roseus (L.) G. Don in Hanoi, Vietnam and is capable of producing vinca alkaloids. This study utilizes the PacBio Sequel technology to completely sequence the whole genome of Talaromyces sp. DC2The genome study revealed that DC2 contains a total of 34.58 Mb spanned by 156 contigs, with a GC content of 46.5%. The identification and prediction of functional protein-coding genes, tRNA, and rRNA were comprehensively predicted and highly annotated using various BLAST databases, including non-redundant (Nr) protein sequence, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Carbohydrate-Active Enzymes (CAZy) databases. The genome of DC2 has a total of 149, 227, 65, 153, 53, and 6 genes responsible for cellulose, hemicellulose, lignin, pectin, chitin, starch, and inulin degradation, respectively. The Antibiotics and Secondary Metabolites Analysis Shell (AntiSMASH) analyses revealed that strain DC2 possesses 20 biosynthetic gene clusters responsible for producing secondary metabolites. The strain DC2 has also been found to harbor the DDC gene encoding aromatic L-amino acid decarboxylase enzyme. Conclusively, this study has provided a comprehensive understanding of the processes involved in secondary metabolites and the ability of the Talaromyces sp. DC2 strain to degrade plant cell walls.

2.
3 Biotech ; 13(12): 416, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38009164

ABSTRACT

In this study, strain DM10 was isolated from mangrove roots and characterized as a halotolerant plant growth-promoting bacterium. Strain DM10 exhibited the ability to solubilize phosphate, produce siderophore, show 1-aminocyclopropane-1-carboxylic acid deaminase activity, and hydrolyze starch. The rice plants subjected to a treatment of NaCl (200 mM) and inoculated with strain DM10 showed an improvement in the shoot length, root length, and dried weight, when compared to those exposed solely to saline treatment. The comprehensive genome sequencing of strain DM10 revealed a genome spanning of 4,171,745 bp, harboring 3626 protein coding sequences. Within its genome, strain DM10 possesses genes responsible for both salt-in and salt-out strategies, indicative of a robust genetic adaptation aimed at fostering salt tolerance. Additionally, the genome encodes genes involved in phosphate solubilization, such as the synthesis of gluconic acid, high-affinity phosphate transport systems, and alkaline phosphatase. In the genome of DM10, we identified the acdS gene, responsible for encoding 1-aminocyclopropane-1-carboxylate deaminase, as well as the amy1A gene, which encodes α-amylase. Furthermore, the genome of DM10 contains sequences associated with the iron (3+)-hydroxamate and iron uptake clusters, responsible for siderophore production. Such data provide a deep understanding of the mechanism employed by strain DM10 to combat osmotic and salinity stress, facilitate plant growth, and elucidate its molecular-level behaviors.

SELECTION OF CITATIONS
SEARCH DETAIL
...