Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 417: 126082, 2021 09 05.
Article in English | MEDLINE | ID: mdl-34020351

ABSTRACT

Although drinking water disinfection proved to be an effective strategy to eliminate many pathogens, bacteria can still show disinfection tolerance in drinking water distribution systems. To date, the molecular mechanisms on how environmental stress affects the tolerance of Pseudomonas aeruginosa to monochloramine are not well understood. Here, we investigated how three stress conditions, namely starvation, low temperature, and starvation combined with low temperature, affected the monochloramine tolerance of Pseudomonas aeruginosa, an opportunistic pathogen commonly found in drinking water distribution systems. All stress conditions significantly promoted monochloramine tolerance, among which starvation had the most drastic effects. Proteomic analyses suggested that the three conditions not only triggered a positive antioxidant defense against oxidative damages but also prepared the bacteria to employ a passive defense mechanism against disinfectants via dormancy. Moreover, the expression of antioxidant enzymes reached the maximum under the starvation condition and further low temperature treatment had little effect on bacterial response to oxidative stress. Instead, we found further treatment of the starved cells with low temperature decreased the osmotic stress response and the stringent response, which generally play pivotal roles in disinfection tolerance. Taken together, these findings shed light on how abiotic factors influence the bacterial disinfection tolerance and will aid design of efficient strategies to eliminate Pseudomonas aeruginosa from drinking water.


Subject(s)
Disinfectants , Drinking Water , Chloramines/pharmacology , Disinfectants/toxicity , Disinfection , Proteomics , Pseudomonas aeruginosa
2.
Comput Struct Biotechnol J ; 19: 86-93, 2021.
Article in English | MEDLINE | ID: mdl-33384857

ABSTRACT

The post-translational modification (PTM) serves as an important molecular switch mechanism to modulate diverse biological functions in response to specific cues. Though more commonly found in eukaryotic cells, many PTMs have been identified and characterized in bacteria over the past decade, highlighting the importance of PTMs in regulating bacterial physiology. Several bacterial PTM enzymes have been characterized to function as the toxin component of type II TA systems, which consist of a toxin that inhibits cell growth and an antitoxin that protects the cell from poisoning by the toxin. While TA systems can be classified into seven types based on nature of the antitoxin and its activity, type II TA systems are perhaps the most studied among the different TA types and widely distributed in eubacteria and archaea. The type II toxins possessing PTM activities typically modify various cellular targets mostly associated with protein translation and DNA replication. This review mainly focuses on the enzymatic activities, target specificities, antitoxin neutralizing mechanisms of the different families of PTM toxins. We also proposed that TA systems can be conceptually viewed as molecular switches where the 'on' and 'off' state of the system is tightly controlled by antitoxins and discussed the perspective on toxins having other physiologically roles apart from growth inhibition by acting on the nonessential cellular targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...