Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(24): 16963-16971, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38742395

ABSTRACT

Advances in theoretical calculations have boosted the search for high-temperature superconductors, such as sulfur hydrides and rare-earth polyhydrides. However, the required extremely high pressures for stabilizing these superconductors has handicapped further implementation. Based upon thorough structural searches, we identified a series of unprecedented superconducting technetium borides at moderate pressures, including TcB (P63/mmc) with a superconducting transition temperature of Tc = 20.2 K at ambient pressure and TcB2 (P6/mmm) with Tc = 23.1 K at 20 GPa. Superconductivity in these technetium borides mainly originates from the coupling between the low-frequency vibrations of technetium atoms and the dominant technetium-4d electrons at the Fermi level. Our work therefore presents a fresh group in the family of superconducting borides, whose diversified crystal structures suggest rich possibilities in the discovery of other superconducting transition-metal borides.

2.
Sci Bull (Beijing) ; 68(13): 1372-1378, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37349163

ABSTRACT

Recent experimental study by Dasenbrock-Gammon et al. (Nature 2023;615:244) claims to have discovered room-temperature superconductivity in lutetium-nitrogen-hydrogen system at 1 GPa, which sheds light on the long-held dream of ambient superconductivity. However, all follow-up experiments found no evidence of superconductivity. The compositions and the crystal structures of the lutetium-nitrogen-hydrogen system remain unknown. By employing the density functional theory based structure prediction algorithm, we suggest that in lutetium-nitrogen-hydrogen the major component is LuH2 (Fm3¯m), together with minor LuN (Fm3¯m). The blue LuH2 at ambient pressure will turn into purple and red color at higher pressures, possibly accompanied by the formation of vacancies at hydrogen-sites. In LuH2 and LuN, the density of states at the Fermi level is dominated by the Lu-5d orbitals, while those from hydrogen and nitrogen are very small, leading to the absence of superconductivity in these two compounds. Nitrogen-doping to LuH2 fails to enhance the superconductivity as well. In this work, we identify the leading components in N-doped lutetium hydride, explain its intriguing color changes under pressure, and elucidate why superconductivity is absent in the follow-up experiments.

3.
J Phys Condens Matter ; 34(18)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-34544070

ABSTRACT

Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.In memoriam, to Neil Ashcroft, who inspired us all.

4.
J Phys Condens Matter ; 33(28)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-33647891

ABSTRACT

A15 Nb3Si is, until now, the only 'high' temperature superconductor produced at high pressure (∼110 GPa) that has been successfully brought back to room pressure conditions in a metastable condition. Based on the current great interest in trying to create metastable-at-room-pressure high temperature superconductors produced at high pressure, we have restudied explosively compressed A15 Nb3Si and its production from tetragonal Nb3Si. First, diamond anvil cell pressure measurements up to 88 GPa were performed on explosively compressed A15 Nb3Si material to traceTcas a function of pressure.Tcis suppressed to ∼5.2 K at 88 GPa. Then, using theseTc(P) data for A15 Nb3Si, pressures up to 92 GPa were applied at room temperature (which increased to 120 GPa at 5 K) on tetragonal Nb3Si. Measurements of the resistivity gave no indication of any A15 structure production, i.e. no indications of the superconductivity characteristic of A15 Nb3Si. This is in contrast to the explosive compression (up toP∼ 110 GPa) of tetragonal Nb3Si, which produced 50%-70% A15 material,Tc= 18 K at ambient pressure, in a 1981 Los Alamos National Laboratory experiment. This implies that the accompanying high temperature (1000 °C) caused by explosive compression is necessary to successfully drive the reaction kinetics of the tetragonal → A15 Nb3Si structural transformation. Our theoretical calculations show that A15 Nb3Si has an enthalpy vs the tetragonal structure that is 70 meV atom-1smallerat 100 GPa, while at ambient pressure the tetragonal phase enthalpy is lower than that of the A15 phase by 90 meV atom-1. The fact that 'annealing' the A15 explosively compressed material at room temperature for 39 years has no effect shows that slow kinetics can stabilize high pressure metastable phases at ambient conditions over long times even for large driving forces of 90 meV atom-1.

5.
Phys Rev Lett ; 121(7): 077001, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30169100

ABSTRACT

We report the evolution of the electronic nematic susceptibility in FeSe via Raman scattering as a function of hydrostatic pressure up to 5.8 GPa where the superconducting transition temperature T_{c} reaches its maximum. The critical nematic fluctuations observed at low pressure vanish above 1.6 GPa, indicating they play a marginal role in the fourfold enhancement of T_{c} at higher pressures. The collapse of nematic fluctuations appears to be linked to a suppression of low energy electronic excitations which manifests itself by optical phonon anomalies at around 2 GPa, in agreement with lattice dynamical and electronic structure calculations using local density approximation combined with dynamical mean field theory. Our results reveal two different regimes of nematicity in the phase diagram of FeSe under pressure: a d-wave Pomeranchuk instability of the Fermi surface at low pressure and a magnetic driven orthorhombic distortion at higher pressure.

6.
J Phys Condens Matter ; 30(7): 075501, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29300186

ABSTRACT

Tight binding models have proven an effective means of revealing Dirac (massless) dispersion, flat bands (infinite mass), and intermediate cases such as the semi-Dirac (sD) dispersion. This approach is extended to a three band model that yields, with chosen parameters in a two-band limit, a closed line with maximally asymmetric particle-hole dispersion: infinite mass holes, zero mass particles. The model retains the sD points for a general set of parameters. Adjacent to this limiting case, hole Fermi surfaces are tiny and needle-like. A pair of large electron Fermi surfaces at low doping merge and collapse at half filling to a flat (zero energy) closed contour with infinite mass along the contour and enclosing no carriers on either side, while the hole Fermi surface has shrunk to a point at zero energy, also containing no carriers. The tight binding model is used to study several characteristics of the dispersion and density of states. The model inspired generalization of sD dispersion to a general ±[Formula: see text] form, for which analysis reveals that both n and m must be odd to provide a diabolical point with topological character. Evolution of the Hofstadter spectrum of this three band system with interband coupling strength is presented and discussed.

7.
J Phys Condens Matter ; 26(27): 274203, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24935701

ABSTRACT

To gain insight into the mechanism of charge ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2M(n+)→M((n+1)+) + M((n-1)+), we (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO2 and the dual charge state insulator AgO, and (3) analyze the cationic occupations of the actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, and hence no charge ordering), and that the experimental data used to support charge ordering can be accounted for within density functional-based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least in many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians isdiscussed.


Subject(s)
Ions/chemistry , Models, Chemical , Silver Nitrate/chemistry , Static Electricity , Computer Simulation , Phase Transition
8.
Phys Rev Lett ; 109(21): 216401, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23215600

ABSTRACT

While the formal valence and charge state concepts have been tremendously important in materials physics and chemistry, their very loose connection to actual charge leads to uncertainties in modeling behavior and interpreting data. We point out, taking several transition metal oxides (La(2) VCuO(6), YNiO(3), CaFeO(3), AgNiO(2), V(4)O(7)) as examples, that while dividing the crystal charge into atomic contributions is an ill-posed activity, the 3d occupation of a cation (and more particularly, differences) is readily available in first principles calculations. We discuss these examples, which include distinct charge states and charge-order (or disproportionation) systems, where different "charge states" of cations have identical 3d orbital occupation. Implications for theoretical modeling of such charge states and charge-ordering mechanisms are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...