Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(4): e2305841, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712105

ABSTRACT

Pitch-derived carbon (PC) anode features the merits of low-cost, rich edge-defect sites, and tunable crystallization degree for potassium ion batteries (PIBs). However, gaining the PC anode with both rich edge-defect sites and robust structure remains challenging. Herein, micro-sized and robust PC/expanded-graphite (EG) composites (EGC) with rich edge-defect sites are massively synthesized via melting impregnation and confined pyrolysis. The PC is in situ encapsulated in micro-sized EG skeleton with robust chemical bonds between PC and EG after thermal treatment, endowing the structural stability as micro-sized carbon-carbon composites. The confinement effect originating from EG skeleton could suppress the crystallization degree of the PC and contribute rich edge-defect sites in EGC composites. Additionally, the EG skeleton inside EGC could form continuous electronic conduction nets and establish low-tortuosity carbonaceous electrodes, facilitating rapid electron/ion migration. While applied in PIBs, the EGC anode delivers a reversible capacity that up to 338.5 mAh g-1 at 0.1 A g-1 , superior rate performance of 127.5 mAh g-1 at 5.0 A g-1 , and long-term stability with 204.8 mAh g-1 retain after 700 cycles at 1.0 A g-1 . This novel strategy highlights an interesting category of heterogeneous carbon-carbon composite materials to keep pace with the demand for the future PIBs industry.

2.
Small ; 19(37): e2302200, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37150868

ABSTRACT

Metallic-phase iron sulfide (e.g., Fe7 S8 ) is a promising candidate for high power density sodium storage anode due to the inherent metal electronic conductivity and unhindered sodium-ion diffusion kinetics. Nevertheless, long-cycle stability can not be achieved simultaneously while designing a fast-charging Fe7 S8 -based anode. Herein, Fe7 S8 encapsulated in carbon-sulfur bonds doped hollow carbon fibers (NHCFs-S-Fe7 S8 ) is designed and synthesized for sodium-ion storage. The NHCFs-S-Fe7 S8 including metallic-phase Fe7 S8 embrace higher electron specific conductivity, electrochemical reversibility, and fast sodium-ion diffusion. Moreover, the carbonaceous fibers with polar CSFe bonds of NHCFs-S-Fe7 S8 exhibit a fixed confinement effect for electrochemical conversion intermediates contributing to long cycle life. In conclusion, combined with theoretical study and experimental analysis, the multinomial optimized NHCFs-S-Fe7 S8 is demonstrated to integrate a suitable structure for higher capacity, fast charging, and longer cycle life. The full cell shows a power density of 1639.6 W kg-1 and an energy density of 204.5 Wh kg-1 , respectively, over 120 long cycles of stability at 1.1 A g-1 . The underlying mechanism of metal sulfide structure engineering is revealed by in-depth analysis, which provides constructive guidance for designing the next generation of durable high-power density sodium storage anodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...