Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
PeerJ ; 11: e15069, 2023.
Article in English | MEDLINE | ID: mdl-37013146

ABSTRACT

Effluent-fed streams, which receive inputs from wastewater treatment plants, are becoming increasingly common across the globe as urbanization intensifies. In semi-arid and arid regions, where many natural streams have dried up due to over extraction of water, many streams rely completely on treated effluent to sustain baseflow during dry seasons. These systems are often thought of as 'second-class' or highly disturbed stream ecosystems, but they have the potential to serve as refuges for native aquatic biota if water quality is high, especially in areas where few natural habitats remain. In this study, we investigated seasonal and longitudinal water quality dynamics at multiple sites across six reaches of three effluent-dependent rivers in Arizona (USA) with the objective (1) to quantify changes in effluent water quality due to distance traveled and season/climate and (2) to qualify whether water quality conditions in these systems are sufficient to support native aquatic species. Study reaches ranged in length from 3 to 31 km and in geographic setting from low desert to montane conifer forest. We observed the lowest water quality conditions (e.g., elevated temperature and low dissolved oxygen) during the summer in low desert reaches, and significantly greater natural remediation of water quality in longer vs. shorter reaches for several factors, including temperature, dissolved oxygen and ammonia. Nearly all sites met or exceeded water quality conditions needed to support robust assemblages of native species across multiple seasons. However, our results also indicated that temperature (max 34.2 °C), oxygen levels (min 2.7 mg/L) and ammonia concentrations (max 5.36 mg/L N) may occasionally be stressful for sensitive taxa at sites closest to effluent outfalls. Water quality conditions may be a concern during the summer. Overall, effluent-dependent streams have the capacity to serve as refuges for native biota in Arizona, and they may become the only aquatic habitat available in many urbanizing arid and semi-arid regions.


Subject(s)
Rivers , Water Quality , Seasons , Environmental Monitoring/methods , Ecosystem , Arizona , Ammonia , Oxygen
2.
Environ Sci Pollut Res Int ; 28(33): 45375-45389, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33864222

ABSTRACT

Effluent discharge from wastewater treatment plants can be a substantial source of microplastics in receiving water bodies including rivers. Despite growing concern about microplastic pollution in freshwater habitats, the literature has not yet addressed effluent-dependent rivers, which derive 100% of their baseflow from effluent. The objective of this study was to document and explore trends in microplastic pollution within the effluent-dependent lower Santa Cruz River near Tucson, Arizona (USA). We examined microplastic concentrations in the water column and benthic sediment and microplastic consumption by mosquitofish (Gambusia affinis) at 10 sites along a ~40 km stretch of the lower Santa Cruz River across two time periods: baseflow (effluent only) and post-flood (effluent immediately following urban runoff). In total, across both sampling periods, we detected microplastics in 95% of water column samples, 99% of sediment samples, and 6% of mosquitofish stomachs. Flow status (baseflow vs post-flood) was the only significant predictor of microplastic presence and concentrations in our models. Microplastic fragment concentrations in the water column were higher post-flood, microplastic fiber concentrations in benthic sediment were lower post-flood, and mosquitofish were more likely to have consumed microplastics post-flood than during baseflow. The additional microplastics detected after flooding was likely due to a combination of allochthonous material entering the channel via runoff and bed scour that exhumed microplastics previously buried in the riverbed. Effluent-dependent urban streams are becoming increasingly common; more work is needed to identify microplastic pollution baselines and trends in effluent rivers worldwide.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Floods , Plastics , Rivers , United States , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 518-519: 479-90, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25777953

ABSTRACT

Trace organic compounds (TOrCs) in municipal wastewater effluents that are discharged to streams are of potential concern to ecosystem and human health. This study examined the fate of a suite of TOrCs and estrogenic activity in water and sediments in an effluent-dependent stream in Tucson, Arizona. Sampling campaigns were performed during 2011 to 2013 along the Lower Santa Cruz River, where TOrCs and estrogenic activity were measured in aqueous (surface) and solid (riverbed sediment) phases. Some TOrCs, including contributors to estrogenic activity, were rapidly attenuated with distance of travel in the river. Those TOrCs that are not sufficiently attenuated and percolate to ground water have in common low biodegradation probabilities and low octanol-water distribution ratios. Independent experiments showed that attenuation of estrogenic compounds may be due in part to indirect photolysis caused by formation of organic radicals from sunlight absorption. Hydrophobic TOrCs may accumulate in riverbed sediments during dry weather periods, but riverbed sediment quality is periodically affected through storm-related scouring during periods of heavy rainfall and runoff. Taken together, evidence suggests that natural processes can attenuate at least some TOrCs, reducing potential impacts to ecosystem and human health.


Subject(s)
Environmental Monitoring , Organic Chemicals/analysis , Rivers/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Arizona , Ecosystem , Waste Disposal, Fluid
4.
J Environ Monit ; 13(12): 3481-4, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22027739

ABSTRACT

The objective of this study was to investigate the impact of length scale (travel distance) on the retention and transport of Cryptosporidium oocysts in a sandy soil. Long columns (1 and 2 meters) and an in situ lysimeter (4 m) were used to allow investigation of larger-scale transport under controlled conditions. Significant retention of oocysts was observed, with the magnitude of removal from solution ranging between 2 to 5 logs. While the removal was greater for longer travel distances (or residence times), the increase was not log-linear. This observation indicates that oocyst transport was not consistent with standard colloid filtration theory. The observed behavior is speculated to arise, at least in part, from intrapopulation variability in oocyst properties. The results of this study indicate that while Cryptosporidium oocysts may be expected to experience significant retention and removal during transport in sandy soil, the magnitude of retention may be less than that which would be predicted by applying standard colloid filtration theory to the results of typical short-column experiments. Thus, a fraction of the oocysts may be more mobile than anticipated and thereby pose a greater than expected risk to groundwater.


Subject(s)
Cryptosporidium parvum , Oocysts , Soil Microbiology , Soil Pollutants , Parasite Egg Count , Porosity , Silicon Dioxide , Water Movements
5.
Ann N Y Acad Sci ; 1140: 394-411, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18991940

ABSTRACT

Large quantities of polybrominated diphenyl ethers (PBDEs) have been used as flame retardants in clothing and plastic products since the 1970s. A small fraction of the PBDEs in manufactured products subsequently enters municipal wastewater. Nevertheless, the resistance of these compounds to chemical and biochemical transformations provides opportunities for accumulation in sediments that are in contact with wastewater effluent and agricultural soils that are amended with biosolids derived from wastewater treatment. Balances developed for PBDE congeners indicate that conventional wastewater treatment processes and soil infiltration of treated wastewater in recharge operations do not discriminate significantly among the major congeners in commercially available PBDE products. Accumulation of PBDEs at near part-per-million levels was measured in the surface sediments at the Sweetwater Recharge Facility in Tucson, Arizona, during 10-15 years of operation. Half-lives for loss of major PBDE congeners from sediments were decades or longer. Local agricultural soils amended with biosolids over a 20-year period showed similar accumulation of PBDEs. The widespread use of PBDEs in commercial products, compound persistence, and toxicity indicate that additional effort is warranted to better understand fate-determining processes for PBDEs in the environment.


Subject(s)
Halogenated Diphenyl Ethers/analysis , Sewage/chemistry , Water Purification/methods , Chemistry Techniques, Analytical/methods , Environmental Monitoring/methods , Environmental Pollutants , Hydrocarbons, Brominated/chemistry , Temperature , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 382(2-3): 311-23, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17543371

ABSTRACT

Total estrogenic activity, measured using the yeast estrogen screen reporter gene bioassay, decreased from 60 pM (equivalent 17alpha-ethinylestradiol concentration) to an estimated 1.4 pM during a 24-hour period in which secondary effluent was held in a shallow infiltration basin. Over the same period, anti-estrogenic activity, measured as an equivalent concentration of tamoxifen, increased from 35 to 260 nM, suggesting that antagonists produced during secondary effluent storage played a role in the apparent loss of estrogenic activity. Androgenic activity, measured over the same 24-hour period using the yeast androgen screen, was near or below the method detection limit (0.7 pM as testosterone). However, the same pond samples were clearly anti-androgenic. When whole-sample extracts were separated via adsorption and stepwise elution in alcohol/water solutions consisting of 20, 40 and 100% ethanol, the sum of estrogenic activities in derived fractions was always lower than the measured estrogenic activity in the whole-sample extracts. Summed anti-estrogenic activities in the same fractions, however, always exceeded values for corresponding whole-sample extracts. Results reinforce the importance of sample preparation steps (concentration of organics followed by estrogen/anti-estrogen separation) when measuring endocrine-related activities in chemically complex samples such as wastewater effluent. The potential complexity of relationships among estrogens, anti-estrogens and matrix organics suggests that additive models are of questionable validity for estimating whole-sample estrogenic activity from measurements involving sample fractions.


Subject(s)
Environmental Monitoring/methods , Estrogen Receptor Modulators/analysis , Estrogens, Non-Steroidal/analysis , Sewage/analysis , Water Pollutants, Chemical/analysis , Androgens/analysis , Androgens/toxicity , Arizona , Biological Assay , Dose-Response Relationship, Drug , Estrogen Receptor Modulators/toxicity , Estrogens, Non-Steroidal/toxicity , Receptors, Estrogen/drug effects , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/pharmacology , Water Pollutants, Chemical/toxicity
7.
Environ Sci Technol ; 39(7): 2287-93, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15871266

ABSTRACT

Estrogen activity was measured in wastewater effluent before and after polishing via soil-aquifer treatment (SAT) using both a (hER-beta) competitive binding assay and a transcriptional activation (yeast estrogen screen, YES) assay. From the competitive binding assay, the equivalent 17alpha-ethinylestradiol (EE2) concentration in secondary effluent was 4.7 nM but decreased to 0.22 nM following SAT. The YES assay indicated that the equivalent EE2 concentration in the same effluent sample was below the method-detection limit (<2.5 x 10(-3) nM) but increased to 0.68 nM in effluent polished via SAT processes. It was hypothesized thattest-dependent differences arose because the competitive binding assay responds positively to both estrogen mimics and anti-estrogens; the YES assay responds to estrogen mimics, but test response is inhibited by anti-estrogens. The hypothesis was supported when organics extracted from wastewater effluent inhibited the YES test response to EE2 (anti-estrogenic effect). A similar extract prepared from SAT-polished effluent augmented the EE2 curve (agonist response). When hydrophobic organics in secondary effluent were fractionated, assay results indicated that several physically distinct anti-estrogens were present in the sample. From this work, it is evident that transcription-activation bioassays alone should not be relied upon to measure estrogenic activity in complex environmental samples because the simultaneous presence of both agonists and antagonist compounds can yield false negatives. Multiple in vitro bioassays, sample fractionation or tests designed to measure anti-estrogenic activity can be used to overcome this problem. It is also clear that there are circumstances under which SAT does not completely remove estrogenic activity during municipal wastewater effluent polishing.


Subject(s)
Biological Assay/methods , Estrogens/metabolism , Ethinyl Estradiol/metabolism , Receptors, Estrogen/metabolism , Waste Disposal, Fluid/methods , Water Purification/methods , Arizona , Binding, Competitive , Fluorescence , Humans , Inhibitory Concentration 50 , Receptors, Estrogen/agonists , Receptors, Estrogen/antagonists & inhibitors , Transcriptional Activation/drug effects , Yeasts
8.
Chemosphere ; 54(6): 777-88, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14602111

ABSTRACT

The fate of dissolved organic matter (DOM) during subsurface wetland treatment of wastewater effluent in a hot, semi-arid environment was examined. The study objectives were to (1) discern changes in the character of dissolved organics as consequence of wetland treatment (2) establish the nature of wetland-derived organic matter, and (3) investigate the impact of wetland treatment on the formation potential of trihalomethanes (THMs). Subsurface wetland treatment produced little change in DOM polarity (hydrophobic-hydrophilic) distribution. Biodegradation of labile effluent organic matter (EfOM) and internal loading of wetland-derived natural organic matter (NOM) together produced only minor changes in the distribution of carbon moieties in hydrophobic acid (HPO-A) and transphilic acid (TPI-A) isolates of wetland effluent. Aliphatic carbon decreased as a percentage of total carbon during wetland treatment. The ratio of atomic C:N in wetland-derived NOM suggests that its character is determined by microbial activity. Formation of THMs upon chlorination of HPO-A and TPI-A isolates increased as a consequence of wetland treatment. Wetland-derived NOM was more reactive in forming THMs and less biodegradable than EfOM. For both HPO-A and TPI-A fractions, relationships between biodegradability and THM formation potential were similar among EfOM and NOM isolates; the less biodegradable isolates exhibited greater THM formation potential.


Subject(s)
Organic Chemicals/chemistry , Waste Disposal, Fluid/methods , Arizona , Biodegradation, Environmental , Carbon/analysis , Carbon/chemistry , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Organic Chemicals/analysis , Oxidation-Reduction , Seasons , Water Movements
9.
Water Res ; 37(14): 3401-11, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12834733

ABSTRACT

A 5-year program of study was conducted at the Sweetwater Recharge Facilities (SRF) to assess the performance of surface spreading operations for organics attenuation during field-scale soil-aquifer treatment (SAT) of municipal wastewater. Studies were conducted utilizing both mature (approximately 10 yr old) and new infiltration basins. Removals of dissolved organic carbon (DOC) were robust, averaging >90 percent during percolation through the local 37-m vadose zone. The hydrophilic (most polar) fraction of DOC was preferentially removed during SAT; removals were attributed primarily to biodegradation. Reductions in trihalomethane formation potential (THMFP) averaged 91 percent across the vadose zone profile. The reactivity (specific THMFP) of post-SAT organic residuals with chlorine decreased slightly from pre-SAT levels (60 vs. 72 microg THM per mg DOC, respectively). Variations in the duration of wetting/drying periods did not significantly impact organic removal efficiencies.


Subject(s)
Conservation of Natural Resources , Trihalomethanes/analysis , Waste Disposal, Fluid/methods , Water Supply , Environmental Monitoring , Organic Chemicals , Soil
10.
Water Res ; 37(4): 753-62, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12531257

ABSTRACT

Removals of indigenous coliphage and seeded poliovirus type 1 during simulated soil-aquifer treatment were evaluated during transport of secondary effluent under unsaturated flow conditions in 1-m soil columns. Independent variables included soil type (river sand or sandy loam) and infiltration rate. Removal of coliphage was in all cases less than removal of poliovirus type 1 (strain LSc-2ab), supporting contentions that indigenous coliphage can act as a conservative indicator of groundwater contamination by viral pathogens of human origin. Coliphage retention was significantly more efficient (p<0.001) in the finer-grained sandy loam (93%) than in sand (76%). Increasing reactor detention time from 5 to 20 h increased coliphage attenuation from 70% to 99% in a 1-m sand column. There was a significant linear correlation (p=0.012) between log-transformed (fractional) coliphage concentration [log(C/C(0))] and reactor detention time. Re-mobilization of attached coliphage occurred during simulated rainfall using low-ionic-strength water. Inhibition of aerobic respiration resulted in significantly less efficient coliphage attenuation (p=0.033), suggesting the involvement of aerobic microorganisms in the survival/retention of this virus.


Subject(s)
Poliovirus/isolation & purification , Water Microbiology , Water Purification/methods , Aerobiosis , Chromatography, Liquid , Coliphages/isolation & purification , Coliphages/physiology , Poliovirus/physiology , Rain , Time Factors
11.
J Water Health ; 1(1): 33-44, 2003 Mar.
Article in English | MEDLINE | ID: mdl-15384271

ABSTRACT

Hydrophobic acid (HPO-A) and transphilic acid (TPI-A) fractions of dissolved organic matter (DOM) were isolated from a domestic secondary wastewater effluent that was polished via soil aquifer treatment (SAT). Fractions were isolated using XAD resin adsorption chromatography from samples obtained along the vadose zone flowpath at a full-scale basin recharge facility in Tucson, Arizona. Changes in isolate character during SAT were established via biodegradability (batch test), specific ultraviolet light absorbance (SUVA), trihalomethane formation potential (THMFP), and Ames mutagenicity assays. The dissolved organic carbon (DOC) concentration decreased by >90% during SAT. A significant fraction (up to 20%) of isolated post-SAT HPO-A was biodegradable. The (apparent) refractory nature of DOM that survives SAT may be a consequence of low DOC concentration in groundwater as well as the nature of the compounds themselves. Specific THMFP (microg THM per mg DOC) of HPO-A and TPI-A varied little as a consequence of SAT, averaging 52 and 49 microg THM per mg DOC, respectively. The nonbiodegradable fractions of HPO-A and TPI-A exhibited higher reactivities: 89 and 95 microg THM per mg DOC, respectively. Genotoxicity of HPO-A (on a per mass basis) increased after SAT, suggesting that responsible compounds are removed less efficiently than bulk organics during vadose zone transport.


Subject(s)
Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Purification/methods , Arizona , Biodegradation, Environmental , Calcium Carbonate/analysis , Conservation of Natural Resources , Humans , Soil Pollutants/isolation & purification , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL