Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850318

ABSTRACT

The identification and quantification of misfolded proteins from complex mixtures is important for biological characterization and disease diagnosis, but remains a major bioanalytical challenge. We have developed Hsp40 Affinity Profiling as a bioanalytical approach to profile protein stability in response to cellular stress. In this assay, we ectopically introduce the Hsp40 FlagDNAJB8H31Q into cells and use quantitative proteomics to determine how protein affinity for DNAJB8 changes in the presence of cellular stress, without regard for native clients. Herein, we evaluate potential approaches to improve the performance of this bioanalytical assay. We find that although intracellular crosslinking increases recovery of protein interactors, this is not enough to overcome the relative drop in DNAJB8 recovery. While the J-domain promotes Hsp70 association, it does not affect the yield of protein association with DNAJB8 under basal conditions. By contrast, crosslinking and J-domain ablation both substantially increase relative protein interactor recovery with the structurally distinct Class B Hsp40 DNAJB1 but are completely compensated by poorer yield of DNAJB1 itself. Cellular thermal stress promotes increased affinity between DNAJB8H31Q and interacting proteins, as expected for interactions driven by recognition of misfolded proteins. DNAJB8WT does not demonstrate such a property, suggesting that under stress misfolded proteins are handed off to Hsp70. Hence, we find that DNAJB8H31Q is still our most effective recognition element for the recovery of destabilized client proteins following cellular stress.

2.
ACS Chem Biol ; 18(7): 1661-1676, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37427419

ABSTRACT

Herbicides in the widely used chloroacetanilide class harbor a potent electrophilic moiety, which can damage proteins through nucleophilic substitution. In general, damaged proteins are subject to misfolding. Accumulation of misfolded proteins compromises cellular integrity by disrupting cellular proteostasis networks, which can further destabilize the cellular proteome. While direct conjugation targets can be discovered through affinity-based protein profiling, there are few approaches to probe how cellular exposure to toxicants impacts the stability of the proteome. We apply a quantitative proteomics methodology to identify chloroacetanilide-destabilized proteins in HEK293T cells based on their binding to the H31Q mutant of the human Hsp40 chaperone DNAJB8. We find that a brief cellular exposure to the chloroacetanilides acetochlor, alachlor, and propachlor induces misfolding of dozens of cellular proteins. These herbicides feature distinct but overlapping profiles of protein destabilization, highly concentrated in proteins with reactive cysteine residues. Consistent with the recent literature from the pharmacology field, reactivity is driven by neither inherent nucleophilic nor electrophilic reactivity but is idiosyncratic. We discover that propachlor induces a general increase in protein aggregation and selectively targets GAPDH and PARK7, leading to a decrease in their cellular activities. Hsp40 affinity profiling identifies a majority of propachlor targets identified by competitive activity-based protein profiling (ABPP), but ABPP can only identify about 10% of protein targets identified by Hsp40 affinity profiling. GAPDH is primarily modified by the direct conjugation of propachlor at a catalytic cysteine residue, leading to global destabilization of the protein. The Hsp40 affinity strategy is an effective technique to profile cellular proteins that are destabilized by cellular toxin exposure. Raw proteomics data is available through the PRIDE Archive at PXD030635.


Subject(s)
Herbicides , Proteome , Humans , Cysteine , HEK293 Cells , Herbicides/toxicity , Herbicides/chemistry , Nerve Tissue Proteins , Molecular Chaperones , HSP40 Heat-Shock Proteins
3.
J Biol Chem ; 298(12): 102597, 2022 12.
Article in English | MEDLINE | ID: mdl-36244454

ABSTRACT

Most eukaryotic secretory proteins are cotranslationally translocated through Sec61 into the endoplasmic reticulum (ER). Because these proteins have evolved to fold in the ER, their mistargeting is associated with toxicity. Genetic experiments have implicated the ER heat shock protein 70 (Hsp70) Hspa13/STCH as involved in processing of nascent secretory proteins. Herein, we evaluate the role of Hspa13 in protein import and the maintenance of cellular proteostasis in human cells, primarily using the human embryonic kidney 293T cell line. We find that Hspa13 interacts primarily with the Sec61 translocon and its associated factors. Hspa13 overexpression inhibits translocation of the secreted protein transthyretin, leading to accumulation and aggregation of immature transthyretin in the cytosol. ATPase-inactive mutants of Hspa13 further inhibit translocation and maturation of secretory proteins. While Hspa13 overexpression inhibits cell growth and ER quality control, we demonstrate that HSPA13 knockout destabilizes proteostasis and increases sensitivity to ER disruption. Thus, we propose that Hspa13 regulates import through the translocon to maintain both ER and cytosolic protein homeostasis. The raw mass spectrometry data associated with this article have been deposited in the PRIDE archive and can be accessed at PXD033498.


Subject(s)
Heat-Shock Proteins , Proteostasis , Humans , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Prealbumin/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Protein Transport , SEC Translocation Channels/metabolism
4.
Anal Chem ; 93(50): 16940-16946, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34874156

ABSTRACT

Environmental toxins and toxicants can damage proteins and threaten cellular proteostasis. Most current methodologies to identify misfolded proteins in cells survey the entire proteome for sites of changed reactivity. We describe and apply a quantitative proteomics methodology to identify destabilized proteins based on their binding to the human Hsp40 chaperone DNAJB8. These protein targets are validated by an orthogonal limited proteolysis assay using parallel reaction monitoring. We find that a brief exposure of HEK293T cells to meta-arsenite increases the affinity of two dozen proteins to DNAJB8, including known arsenite-sensitive proteins. In particular, arsenite treatment destabilizes both the pyruvate dehydrogenase complex E1 subunit and several RNA-binding proteins. This platform can be used to explore how environmental toxins impact cellular proteostasis and to identify the susceptible proteome.


Subject(s)
Hazardous Substances , Proteome , HEK293 Cells , HSP40 Heat-Shock Proteins , Humans , Molecular Chaperones , Nerve Tissue Proteins , Proteolysis , Proteomics
5.
J Proteome Res ; 19(4): 1565-1573, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32138514

ABSTRACT

The quantitative multiplexing capacity of isobaric tandem mass tags (TMT) has increased the throughput of affinity purification mass spectrometry (AP-MS) to characterize protein interaction networks of immunoprecipitated bait proteins. However, variable bait levels between replicates can convolute interactor identification. We compared the Student's t-test and Pearson's R correlation as methods to generate t-statistics and assessed the significance of interactors following TMT-AP-MS. Using a simple linear model of protein recovery in immunoprecipitates to simulate reporter ion ratio distributions, we found that correlation-derived t-statistics protect against bait variance while robustly controlling type I errors (false positives). We experimentally determined the performance of these two approaches for determining t-statistics under two experimental conditions: irreversible prey association to the Hsp40 mutant DNAJB8H31Q followed by stringent washing, and reversible association to 14-3-3ζ with gentle washing. Correlation-derived t-statistics performed at least as well as Student's t-statistics for each sample and with substantial improvement in performance for experiments with high bait-level variance. Deliberately varying bait levels over a large range fails to improve selectivity but does increase the robustness between runs. The use of correlation-derived t-statistics should improve identification of interactors using TMT-AP-MS. Data are available via ProteomeXchange with identifier PXD016613.


Subject(s)
14-3-3 Proteins , Tandem Mass Spectrometry , Chromatography, Affinity , HSP40 Heat-Shock Proteins , Humans , Molecular Chaperones , Nerve Tissue Proteins , Protein Interaction Maps , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...