Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Rev Port Cardiol ; 42(4): 385-389, 2023 04.
Article in English, Portuguese | MEDLINE | ID: mdl-36893834

ABSTRACT

Ablation of atypical left atrial flutters (LAF) is very challenging due to the complexity of the underlying atrial substrate and diverse arrhythmia mechanisms. The interpretation of the arrhythmia mechanism is usually difficult, even using advanced three-dimensional (3D) mapping systems. SparkleMap is a novel mapping algorithm that displays each electrogram as a green dot that lights up at the point corresponding to the local activation time, superimposed either on the substrate or the local activation time 3D-maps. It is not affected by the setting of the "window of interest" and there is no need for user post-processing. We present the case of patient with a persistent atypical LAF in whom we tested the concept of complex arrhythmia interpretation exclusively based on the analysis of the substrate and evaluation of SparkleMap-derived wavefront propagation. We describe the workflow for map collection and the systematic approach for arrhythmia interpretation that resulted in the identification of a dual loop perimitral mechanism with a common slow conducting isthmus inside a scar at the septum/anterior atrial wall. This new method of analysis enabled the use of a specifically targeted and precise approach for ablation, with restoration of sinus rhythm within five seconds of radiofrequency application. After 18 months of follow-up, the patient remains free from recurrences, without anti-arrhythmic medication. This case report exemplifies how helpful new mapping algorithms can be in the interpretation of the arrhythmia mechanism in patients with complex LAF. It also suggests an innovative workflow to integrate the SparkleMap into the mapping approach.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Atrial Flutter , Catheter Ablation , Humans , Atrial Flutter/surgery , Atrial Flutter/etiology , Atrial Fibrillation/surgery , Catheter Ablation/methods , Heart Atria , Atrial Appendage/surgery , Treatment Outcome
2.
ACS Omega ; 5(19): 10868-10877, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32455207

ABSTRACT

Mechanochemistry is an alternative for sustainable solvent-free processes that has taken the big step to become, in the near future, a useful synthetic method for academia and the fine chemical industry. The apparatus available, based on ball milling systems possessing several optimizable variables, requires too many control and optimization experiments to ensure reproducibility, which has limited its widespread utilization so far. Herein, we describe the development of an automatic mechanochemical single-screw device consisting of an electrical motor, a drill, and a drill chamber. The applicability and versatility of the new device are demonstrated by the implementation of di- and multicomponent chemical reactions with high reproducibility, using mechanical action exclusively. As examples, chalcones, dihydropyrimidinones, dihydropyrimidinethiones, pyrazoline, and porphyrins, were synthesized with high yields. The unprecedented sustainability is demonstrated by comparison of EcoScale and E-factor values of these processes with those previously described in the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...