Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
J Am Chem Soc ; 146(21): 14856-14863, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38717994

ABSTRACT

Uranyl fluoride (UO2F2) particles (<20 µm) were subjected to first-of-its-kind analysis via simultaneous laser-induced breakdown spectroscopy (LIBS) and laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS). Briefly, a nanosecond pulsed high-energy laser was focused onto the sample (particle) surface. In a single laser pulse, the UO2F2 particle was excited/ionized within the microplasma volume, and the emission of light was collected via fiber optics such that emission spectroscopy could be employed for the detection of uranium (U) and fluorine (F). The ablated particle was simultaneously transported into the MC-ICP-MS for high precision isotopic (i.e., 234U, 235U, and 238U) analysis. This method, LIBS/LA-MC-ICP-MS was optimized and employed to rapidly measure 80+ UO2F2 particles, which were subjected to different calcination processes, which results in varying degrees of F loss from the individual particles. In measuring the particles, the average F/U ratios for the populations treated at 100 and 500 °C were 2.78 ± 1.28 and 1.01 ± 0.50, respectively, confirming loss of F through the calcination process. The average 235U/238U on the particle populations for the 100 and 500 °C were 0.007262 (22) and 0.007231 (23), which was determined to be <0.2% from the expected value. The 234U/238U ratios on the same particles were 0.000053 (11) and 0.000050 (10) for the 100 and 500 °C, respectively, <10% from the expected value. Notably, each population was analyzed in under 5 min, demonstrating the truly rapid analysis technique presented here.

2.
Article in English | MEDLINE | ID: mdl-38782593

ABSTRACT

BACKGROUND AND PURPOSE: DSC-MRI can be used to generate fractional tumor burden (FTB) maps, via application of relative CBV thresholds, to spatially differentiate glioblastoma recurrence from post treatment radiation effects (PTRE). Image-localized histopathology was previously used to validate FTB maps derived from a reference DSC-MRI protocol using preload, a moderate flip angle (MFA, 60°) and post-processing leakage correction. Recently, a DSC-MRI protocol with a low flip angle (LFA, 30°) with no preload was shown to provide leakage-corrected RCBV equivalent to the reference protocol. This study aims to identify the RCBV thresholds for the LFA protocol that generate the most accurate FTB maps, concordant with those obtained from the reference MFA protocol. MATERIALS AND METHODS: Fifty-two patients with grade IV GBM who had prior surgical resection and received chemotherapy and radiotherapy were included in the study. Two sets of DSC-MRI data were collected sequentially first using LFA protocol with no preload, which served as the preload for the subsequent MFA protocol. Standardized relative CBV maps (sRCBV) were obtained for each patient and co-registered with the anatomical post-contrast T1-weighted images. The reference MFA-based FTB maps were computed using previously published sRCBV thresholds (1.0 and 1.56). An ROC analysis was conducted to identify the optimal, voxelwise LFA sRCBV thresholds, and the sensitivity, specificity, and accuracy of the LFA-based FTB maps were computed with respect to the MFA-based reference. RESULTS: The mean sRCBV values of tumors across patients exhibited strong agreement (CCC = 0.99) between the two protocols. Using the ROC analysis, the optimal lower LFA threshold that accurately distinguishes PTRE from tumor recurrence was found to be 1.0 (sensitivity: 87.77%; specificity: 90.22%), equivalent to the ground truth. To identify aggressive tumor regions, the ROC analysis identified an upper LFA threshold of 1.37 (sensitivity: 90.87%; specificity: 91.10%) for the reference MFA threshold of 1.56. CONCLUSION: For LFA-based FTB maps, a sRCBV threshold of 1.0 and 1.37 can differentiate PTRE from recurrent tumor. FTB maps aids in surgical planning, guiding pathological diagnosis and treatment strategies in the recurrent setting. This study further confirms the reliability of single-dose LFA-based DSC-MRI. ABBREVIATIONS: LFA = low flip angle; MFA = moderate flip angle; sRCBV = standardized relative cerebral blood volume; FTB = fractional tumor burden; PTRE = post treatment radiation effects; ROC = receiver operating characteristics; CCC = concordance correlation coefficient.

3.
Magn Reson Med ; 92(2): 631-644, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38469930

ABSTRACT

PURPOSE: Perfusion MRI reveals important tumor physiological and pathophysiologic information, making it a critical component in managing brain tumor patients. This study aimed to develop a dual-echo 3D spiral technique with a single-bolus scheme to simultaneously acquire both dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) data and overcome the limitations of current EPI-based techniques. METHODS: A 3D spiral-based technique with dual-echo acquisition was implemented and optimized on a 3T MRI scanner with a spiral staircase trajectory and through-plane SENSE acceleration for improved speed and image quality, in-plane variable-density undersampling combined with a sliding-window acquisition and reconstruction approach for increased speed, and an advanced iterative deblurring algorithm. Four volunteers were scanned and compared with the standard of care (SOC) single-echo EPI and a dual-echo EPI technique. Two patients were scanned with the spiral technique during a preload bolus and compared with the SOC single-echo EPI collected during the second bolus injection. RESULTS: Volunteer data demonstrated that the spiral technique achieved high image quality, reduced geometric artifacts, and high temporal SNR compared with both single-echo and dual-echo EPI. Patient perfusion data showed that the spiral acquisition achieved accurate DSC quantification comparable to SOC single-echo dual-dose EPI, with the additional DCE information. CONCLUSION: A 3D dual-echo spiral technique was developed to simultaneously acquire both DSC and DCE data in a single-bolus injection with reduced contrast use. Preliminary volunteer and patient data demonstrated increased temporal SNR, reduced geometric artifacts, and accurate perfusion quantification, suggesting a competitive alternative to SOC-EPI techniques for brain perfusion MRI.


Subject(s)
Algorithms , Brain Neoplasms , Brain , Contrast Media , Imaging, Three-Dimensional , Humans , Imaging, Three-Dimensional/methods , Brain Neoplasms/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods , Artifacts , Male , Female , Adult , Image Processing, Computer-Assisted/methods , Signal-To-Noise Ratio , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods
4.
Anal Bioanal Chem ; 416(11): 2849-2858, 2024 May.
Article in English | MEDLINE | ID: mdl-38289357

ABSTRACT

To sensitively determine 99Tc, a new method for internal quantification of its most common and stable species, [99Tc]Tc O 4 - , was developed. Anion-exchange chromatography (IC) was coupled to inductively coupled plasma-mass spectrometry (ICP-MS) and equipped with an aerosol desolvation system to provide enhanced detection power. Due to a lack of commercial Tc standards, an isotope dilution-like approach using a Ru spike and called isobaric dilution analysis (IBDA) was used for internal quantification of 99Tc. This approach required knowledge of the sensitivities of 99Ru and 99Tc in ICP-MS. The latter was determined using an in-house prepared standard manufactured from decayed medical 99mTc-generator eluates. This standard was cleaned and preconcentrated using extraction chromatography with TEVA resin and quantified via total reflection X-ray fluorescence (TXRF) analysis. IC coupled to ICP-MS enabled to separate, detect and quantify [99Tc]Tc O 4 - as most stable Tc species in complex environments, which was demonstrated in a proof of concept. We quantified this species in untreated and undiluted raw urine collected from a patient, who previously underwent scintigraphy with a 99mTc-tracer, and determined a concentration of 19.6 ± 0.5 ng L-1. The developed method has a high utility to characterize a range of Tc-based radiopharmaceuticals, to determine concentrations, purity, and degradation products in complex samples without the need to assess activity parameters of 99(m)Tc.


Subject(s)
Chromatography , Humans , Mass Spectrometry/methods , Spectrum Analysis , Anions , Indicators and Reagents
5.
Talanta ; 269: 125500, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38070285

ABSTRACT

Microplastics (MPs) are currently one of the major environmental challenges within our society. With the awareness of the impact of MPs on the environment increasing over the last years, the need for increased monitoring as well as comprehensive analysis to better understand the fate and impact of MPs has become more and more important. A major aspect of MP characterization is the assignment of the polymer type of individual particles. Here, per- and poly-fluoroalkyl substances (PFAS), originating from fluor-containing polymers, have gained a lot of attention due to the severe environmental impact. Additionally, quantitative analysis of the metal content is of great interest in the field, since MPs are prone to either leaching (in)organic additives into the environment or taking up and accumulating hazardous components (e.g., heavy metals). In this work we demonstrate the capabilities of a simultaneous LIBS/LA-ICP-MS setup for the analysis of MPs. In the first part, we demonstrate the potential of targeted LIBS analysis for the imaging of fluor-containing polymers. Using a laser spot size of 5 µm combined with highly sensitive ICCD detection enables analysis of particles in the low µm range. In the second part we combine the polymer-identification capabilities of LIBS with the high sensitivity of ICP-MS to perform matrix-matched quantification of the metal content of individual MPs. In this case we use a spot size of 50 µm facilitating polymer classification with a broadband spectrometer, resulting in detection limits of 0.72 µg/g for Pb and 9.5 µg/g for Sn simultaneously measured using ICP-MS.

6.
Front Oncol ; 13: 1156843, 2023.
Article in English | MEDLINE | ID: mdl-37799462

ABSTRACT

Introduction: 1.5 Tesla (1.5T) remain a significant field strength for brain imaging worldwide. Recent computer simulations and clinical studies at 3T MRI have suggested that dynamic susceptibility contrast (DSC) MRI using a 30° flip angle ("low-FA") with model-based leakage correction and no gadolinium-based contrast agent (GBCA) preload provides equivalent relative cerebral blood volume (rCBV) measurements to the reference-standard acquisition using a single-dose GBCA preload with a 60° flip angle ("intermediate-FA") and model-based leakage correction. However, it remains unclear whether this holds true at 1.5T. The purpose of this study was to test this at 1.5T in human high-grade glioma (HGG) patients. Methods: This was a single-institution cross-sectional study of patients who had undergone 1.5T MRI for HGG. DSC-MRI consisted of gradient-echo echo-planar imaging (GRE-EPI) with a low-FA without preload (30°/P-); this then subsequently served as a preload for the standard intermediate-FA acquisition (60°/P+). Both normalized (nrCBV) and standardized relative cerebral blood volumes (srCBV) were calculated using model-based leakage correction (C+) with IBNeuro™ software. Whole-enhancing lesion mean and median nrCBV and srCBV from the low- and intermediate-FA methods were compared using the Pearson's, Spearman's and intraclass correlation coefficients (ICC). Results: Twenty-three HGG patients composing a total of 31 scans were analyzed. The Pearson and Spearman correlations and ICCs between the 30°/P-/C+ and 60°/P+/C+ acquisitions demonstrated high correlations for both mean and median nrCBV and srCBV. Conclusion: Our study provides preliminary evidence that for HGG patients at 1.5T MRI, a low FA, no preload DSC-MRI acquisition can be an appealing alternative to the reference standard higher FA acquisition that utilizes a preload.

7.
Front Oncol ; 13: 1248249, 2023.
Article in English | MEDLINE | ID: mdl-37810983

ABSTRACT

Background: [18F]fluciclovine amino acid PET has shown promise for detecting brain tumor regions undetected on conventional anatomic MRI scans. However, it remains unclear which of these modalities provides a better assessment of the whole brain tumor burden. This study quantifies the performance of [18F]fluciclovine PET and MRI for detecting the whole brain tumor burden. Methods: Thirteen rats were orthotopically implanted with fluorescently transduced human glioblastoma cells. Rats underwent MRI (T1- and T2-weighted) and [18F]fluciclovine PET. Next brains were excised, optically cleared, and scanned ex vivo with fluorescence imaging. All images were co-registered using a novel landmark-based registration to enable a spatial comparison. The tumor burden identified on the fluorescent images was considered the ground truth for comparison with the in vivo imaging. Results: Across all cases, the PET sensitivity for detecting tumor burden (median 0.67) was not significantly different than MRI (combined T1+T2-weighted) sensitivity (median 0.61; p=0.85). However, the combined PET+MRI sensitivity (median 0.86) was significantly higher than MRI alone (41% higher; p=0.004) or PET alone (28% higher; p=0.0002). The specificity of combined PET+MRI (median=0.91) was significantly lower compared with MRI alone (6% lower; p=0.004) or PET alone (2% lower; p=0.002). Conclusion: In these glioblastoma xenografts, [18F]fluciclovine PET did not provide a significant increase in tumor burden detection relative to conventional anatomic MRI. However, a combined PET and MRI assessment did significantly improve detection sensitivity relative to either modality alone, suggesting potential value in a combined assessment for some tumors.

8.
Sci Total Environ ; 905: 166909, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37689191

ABSTRACT

Single cell-inductively coupled plasma-mass spectrometry (sc-ICP-MS) was used in this study as a valuable tool to assess the species-dependent uptake of metallopharmaceuticals into algal cells. Chlamydomonas reinhardtii algae were incubated for 24 h with four Gadolinium-based contrast agents (GBCAs) and GdCl3. A species dependency towards the uptake of the tested Gd species was observed. Using single cell-ICP-MS, a Gd signal corresponding to single cell events was detected for GdCl3 and the linear GBCAs Omniscan® (Gadodiamide, Gd-DTPA-BMA) and Magnevist® (Gadodiamide, Gd-DTPA). For the macrocyclic complexes Dotarem® (Gadoteric acid, Gd-DOTA) and Gadovist® (Gadobutrol, Gd-BT-DO3A), no such Gd signal was visible. Total Gd analysis via ICP-MS confirmed the presence of Gd in the cells only after incubation with GdCl3 and the linear GBCAs, while only small amounts of Gd were detected for the incubations with macrocyclic GBCAs. Furthermore, the results showed that more Gd is bound to cell structures or macromolecules, while smaller amounts are present in the lysate. Using hydrophilic interaction liquid chromatography (HILIC)-ICP-MS, the soluble Gd species in the lysate were analyzed to determine if the initial Gd complexes were still intact. Surprisingly, no intact GBCAs were detected in the lysates of any incubation solution, possibly due to a change in Gd speciation. Further research is needed to assess which Gd species are present in the lysate, while "free" Gd ions or adducts with cell constituents are the most likely explanation. This study highlights the need for species-dependent investigation of elements in aquatic organisms. Moreover, the uptake of linear GBCAs and their species alteration raises the question of a potential accumulation of Gd in the food chain.


Subject(s)
Chlamydomonas reinhardtii , Organometallic Compounds , Gadolinium , Gadolinium DTPA , Contrast Media/chemistry
9.
Anal Chem ; 95(35): 13322-13329, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37566513

ABSTRACT

An automated and straightforward detection and data treatment strategy for the determination of the protein relative concentration in individual human cells by single cell-inductively coupled plasma-time-of-flight mass spectrometry (sc-ICP-ToF-MS) is proposed. Metal nanocluster (NC)-labeled specific antibodies for the target proteins were employed, and ruthenium red (RR) staining, which binds to the cells surface, was used to determine the number of cell events as well as to evaluate the relative volume of the cells. As a proof of concept, the expression of hepcidin, metallothionein-2, and ferroportin employing specific antibodies labeled with IrNCs, PtNCs, and AuNCs, respectively, was investigated by sc-ICP-ToF-MS in human ARPE-19 cells. Taking into account that ARPE-19 cells are spherical in suspension and RR binds to the surface of the cells, the Ru intensity was related to the cell volume (i.e., the cell volume is directly proportional to (Ru intensity)3/2), making it possible to determine not only the mass of the target proteins in each individual cell but also the relative concentration. The proposed approach is of particular interest in comparing cell cultures subjected to different supplementations. ARPE-19 cell cultures under two stress conditions were compared: a hyperglycemic model and an oxidative stress model. The comparison of the control with treated cells shows not only the mass of analyzed species but also the relative changes in the cell volume and concentration of target proteins, clearly allowing the identification of subpopulations under the respective treatment.


Subject(s)
Metals , Humans , Mass Spectrometry/methods , Spectrum Analysis
10.
Chemosphere ; 338: 139534, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37467858

ABSTRACT

Gadolinium-based contrast agents (GBCAs) are found increasingly in different water bodies, making the investigation of their uptake and distribution behavior in plants a matter of high interest to assess their potential effects on the environment. Depending on the used complexing agent, they are classified into linear or macrocyclic GBCAs, with macrocyclic complexes being more stable. In this study, by using TbCl3, Gd-DTPA-BMA, and Eu-DOTA as model compounds for ionic, linear, and macrocyclic lanthanide species, the elemental species-dependent uptake into leaves of Arabidopsis thaliana under identical biological conditions was studied. After growing for 14 days on medium containing the lanthanide species, the uptake of all studied compounds was confirmed by means of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Furthermore, the uptake rate of TbCl3 and the linear Gd-DTPA-BMA was similar, with Tb and Gd hotspots colocated in the areas of hydathodes and the trichomes of the leaves. In contrast, in the case of the macrocyclic Eu-DOTA, Eu was mainly located in the leaf veins. Additionally, Eu was colocated with Tb and Gd in the hydathode at the tip of the leave. Removal of the lanthanide species from the medium led to a decrease in signal intensities, indicating their subsequent release to some extent. However, seven days after the removal, depositions of Eu, Gd, and Tb were still present in the same areas of the leaves as before, showing that complete elimination was not achieved after this period of time. Overall, more Eu was present in the leaves compared to Gd and Tb, which can be explained by the high stability of the Eu-DOTA complex, potentially leading to a higher transport rate into the leaves, whereas TbCl3 and Gd-DTPA-BMA could interact with the roots, reducing their mobility.


Subject(s)
Arabidopsis , Lanthanoid Series Elements , Laser Therapy , Organometallic Compounds , Organometallic Compounds/chemistry , Gadolinium , Gadolinium DTPA/chemistry , Contrast Media/chemistry
11.
Nanomaterials (Basel) ; 13(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37110906

ABSTRACT

The work described herein assesses the ability to characterize gold nanoparticles (Au NPs) of 50 and 100 nm, as well as 60 nm silver shelled gold core nanospheres (Au/Ag NPs), for their mass, respective size, and isotopic composition in an automated and unattended fashion. Here, an innovative autosampler was employed to mix and transport the blanks, standards, and samples into a high-efficiency single particle (SP) introduction system for subsequent analysis by inductively coupled plasma-time of flight-mass spectrometry (ICP-TOF-MS). Optimized NP transport efficiency into the ICP-TOF-MS was determined to be >80%. This combination, SP-ICP-TOF-MS, allowed for high-throughput sample analysis. Specifically, 50 total samples (including blanks/standards) were analyzed over 8 h, to provide an accurate characterization of the NPs. This methodology was implemented over the course of 5 days to assess its long-term reproducibility. Impressively, the in-run and day-to-day variation of sample transport is assessed to be 3.54 and 9.52% relative standard deviation (%RSD), respectively. The determination of Au NP size and concentration was of <5% relative difference from the certified values over these time periods. Isotopic characterization of the 107Ag/109Ag particles (n = 132,630) over the course of the measurements was determined to be 1.0788 ± 0.0030 with high accuracy (0.23% relative difference) when compared to the multi-collector-ICP-MS determination.

12.
Front Oncol ; 13: 1046629, 2023.
Article in English | MEDLINE | ID: mdl-36733305

ABSTRACT

Background: Relative cerebral blood volume (rCBV) obtained from dynamic susceptibility contrast (DSC) MRI is widely used to distinguish high grade glioma recurrence from post treatment radiation effects (PTRE). Application of rCBV thresholds yield maps to distinguish between regional tumor burden and PTRE, a biomarker termed the fractional tumor burden (FTB). FTB is generally measured using conventional double-dose, single-echo DSC-MRI protocols; recently, a single-dose, dual-echo DSC-MRI protocol was clinically validated by direct comparison to the conventional double-dose, single-echo protocol. As the single-dose, dual-echo acquisition enables reduction in the contrast agent dose and provides greater pulse sequence parameter flexibility, there is a compelling need to establish dual-echo DSC-MRI based FTB mapping. In this study, we determine the optimum standardized rCBV threshold for the single-dose, dual-echo protocol to generate FTB maps that best match those derived from the reference standard, double-dose, single-echo protocol. Methods: The study consisted of 23 high grade glioma patients undergoing perfusion scans to confirm suspected tumor recurrence. We sequentially acquired single dose, dual-echo and double dose, single-echo DSC-MRI data. For both protocols, we generated leakage-corrected standardized rCBV maps. Standardized rCBV (sRCBV) thresholds of 1.0 and 1.75 were used to compute single-echo FTB maps as the reference for delineating PTRE (sRCBV < 1.0), tumor with moderate angiogenesis (1.0 < sRCBV < 1.75), and tumor with high angiogenesis (sRCBV > 1.75) regions. To assess the sRCBV agreement between acquisition protocols, the concordance correlation coefficient (CCC) was computed between the mean tumor sRCBV values across the patients. A receiver operating characteristics (ROC) analysis was performed to determine the optimum dual-echo sRCBV threshold. The sensitivity, specificity, and accuracy were compared between the obtained optimized threshold (1.64) and the standard reference threshold (1.75) for the dual-echo sRCBV threshold. Results: The mean tumor sRCBV values across the patients showed a strong correlation (CCC = 0.96) between the two protocols. The ROC analysis showed maximum accuracy at thresholds of 1.0 (delineate PTRE from tumor) and 1.64 (differentiate aggressive tumors). The reference threshold (1.75) and the obtained optimized threshold (1.64) yielded similar accuracy, with slight differences in sensitivity and specificity which were not statistically significant (1.75 threshold: Sensitivity = 81.94%; Specificity: 87.23%; Accuracy: 84.58% and 1.64 threshold: Sensitivity = 84.48%; Specificity: 84.97%; Accuracy: 84.73%). Conclusions: The optimal sRCBV threshold for single-dose, dual-echo protocol was found to be 1.0 and 1.64 for distinguishing tumor recurrence from PTRE; however, minimal differences were observed when using the standard threshold (1.75) as the upper threshold, suggesting that the standard threshold could be used for both protocols. While the prior study validated the agreement of the mean sRCBV values between the protocols, this study confirmed that their voxel-wise agreement is suitable for reliable FTB mapping. Dual-echo DSC-MRI acquisitions enable robust single-dose sRCBV and FTB mapping, provide pulse sequence parameter flexibility and should improve reproducibility by mitigating variations in preload dose and incubation time.

13.
Brain ; 146(4): 1281-1298, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36445396

ABSTRACT

Glioblastoma is the most aggressive type of primary adult brain tumour. The median survival of patients with glioblastoma remains approximately 15 months, and the 5-year survival rate is <10%. Current treatment options are limited, and the standard of care has remained relatively constant since 2011. Over the last decade, a range of different treatment regimens have been investigated with very limited success. Tumour recurrence is almost inevitable with the current treatment strategies, as glioblastoma tumours are highly heterogeneous and invasive. Additionally, another challenging issue facing patients with glioblastoma is how to distinguish between tumour progression and treatment effects, especially when relying on routine diagnostic imaging techniques in the clinic. The specificity of routine imaging for identifying tumour progression early or in a timely manner is poor due to the appearance similarity of post-treatment effects. Here, we concisely describe the current status and challenges in the assessment and early prediction of therapy response and the early detection of tumour progression or recurrence. We also summarize and discuss studies of advanced approaches such as quantitative imaging, liquid biomarker discovery and machine intelligence that hold exceptional potential to aid in the therapy monitoring of this malignancy and early prediction of therapy response, which may decisively transform the conventional detection methods in the era of precision medicine.


Subject(s)
Biomarkers , Glioblastoma , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Disease Progression , Biomarkers/analysis , Machine Learning , Clinical Decision Rules
14.
Talanta ; 253: 123974, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36195026

ABSTRACT

Single cell-inductively coupled plasma-mass spectrometry (sc-ICP-MS) and laser ablation (LA)-ICP-MS have been complementary employed to develop a comprehensive study of APOE and claudin-1 expression in ARPE-19 cells submitted to a glucose treatment (100 mM, 48 h) that induces oxidative stress conditions. Results were compared with control cells. The determination of the two proteins by ICP-MS was sequentially carried out using specific immunoprobes labelled with IrNCs that offer a huge amplification (1760 ± 90 atoms of Ir on average). A novel sample introduction system, the microFAST Single Cell set-up, was employed for sc-ICP-MS analysis. This introduction system resulted in a cellular transport efficiency of 85 ± 9% for ARPE-19 cells (91 ± 5% using a PtNPs standard). After the proper immunocytochemistry protocol with the specific IrNCs immunoprobes in cell suspensions (sc-ICP-MS), the mass of APOE and claudin-1 in individual ARPE-19 cells was obtained. Average detection limits per cell by sc-ICP-MS were 0.02 fg of APOE and 3 ag of claudin-1. The results of sample analyses obtained by sc-ICP-MS were validated with commercial ELISA kits. The distribution of both target proteins in individual cells (fixated in the chamber wall) was unveiled by LA-ICP-MS. The high amplification provided by the IrNCs immunoprobes allowed the identification of APOE and claudin-1 within individual ARPE-19 cells. High resolution images were obtained using a laser spot of 2 × 2 µm.


Subject(s)
Iridium , Laser Therapy
15.
Metallomics ; 14(7)2022 07 25.
Article in English | MEDLINE | ID: mdl-35790145

ABSTRACT

Quantifying the chemical composition of fast-growing hard tissues in the environment can shed valuable information in terms of understanding ecosystems both prehistoric and current. Changes in chemical composition can be correlated with environmental conditions and can provide information about the organism's life. Sharks can lose 0.1 to 1.1 teeth/day, depending on species, which offers a unique opportunity to record environmental changes over a short duration of time. Shark teeth contain a biomineral phase that is made up of fluorapatite [Ca5(PO4)3F], and the F distribution within the tooth can be correlated to tooth hardness. Typically, this is determined by bulk acid digestion, energy-dispersive X-ray spectroscopy (EDS), or wavelength-dispersive spectroscopy. Here we present laser-induced breakdown spectroscopy (LIBS) as an alternative and faster approach for determining F distribution within shark teeth. Using a two-volume laser ablation chamber (TwoVol3) with innovative embedded collection optics for LIBS, shark teeth were investigated from sand tiger (Carcharias Taurus), tiger (Galeocerdo Cuvier), and hammerhead sharks (Sphyrnidae). Fluorine distribution was mapped using the CaF 603 nm band (CaF, Β 2Σ+ → X 2Σ+) and quantified using apatite reference materials. In addition, F measurements were cross referenced with EDS analyses to validate the findings. Distributions of F (603 nm), Na (589 nm), and H (656 nm) within the tooth correlate well with the expected biomineral composition and expected tooth hardness. This rapid methodology could transform the current means of determining F distribution, particularly when large sample specimens (350 mm2, presented here) and large quantities of specimens are of interest.


Subject(s)
Fluorine , Sharks , Animals , Ecosystem , Fluorides , Lasers , Spectrometry, X-Ray Emission
16.
Adv Drug Deliv Rev ; 187: 114367, 2022 08.
Article in English | MEDLINE | ID: mdl-35654212

ABSTRACT

Immunotherapy has become a fourth pillar in the treatment of brain tumors and, when combined with radiation therapy, may improve patient outcomes and reduce the neurotoxicity. As with other combination therapies, the identification of a treatment schedule that maximizes the synergistic effect of radiation- and immune-therapy is a fundamental challenge. Mechanism-based mathematical modeling is one promising approach to systematically investigate therapeutic combinations to maximize positive outcomes within a rigorous framework. However, successful clinical translation of model-generated combinations of treatment requires patient-specific data to allow the models to be meaningfully initialized and parameterized. Quantitative imaging techniques have emerged as a promising source of high quality, spatially and temporally resolved data for the development and validation of mathematical models. In this review, we will present approaches to personalize mechanism-based modeling frameworks with patient data, and then discuss how these techniques could be leveraged to improve brain cancer outcomes through patient-specific modeling and optimization of treatment strategies.


Subject(s)
Brain Neoplasms , Radiation Oncology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Humans , Immunologic Factors , Immunotherapy , Models, Theoretical , Treatment Outcome
17.
Math Biosci Eng ; 19(6): 5446-5481, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35603364

ABSTRACT

We describe a preliminary effort to model the growth and progression of glioblastoma multiforme, an aggressive form of primary brain cancer, in patients undergoing treatment for recurrence of tumor following initial surgery and chemoradiation. Two reaction-diffusion models are used: the Fisher-Kolmogorov equation and a 2-population model, developed by the authors, that divides the tumor into actively proliferating and quiescent (or necrotic) cells. The models are simulated on 3-dimensional brain geometries derived from magnetic resonance imaging (MRI) scans provided by the Barrow Neurological Institute. The study consists of 17 clinical time intervals across 10 patients that have been followed in detail, each of whom shows significant progression of tumor over a period of 1 to 3 months on sequential follow up scans. A Taguchi sampling design is implemented to estimate the variability of the predicted tumors to using 144 different choices of model parameters. In 9 cases, model parameters can be identified such that the simulated tumor, using both models, contains at least 40 percent of the volume of the observed tumor. We discuss some potential improvements that can be made to the parameterizations of the models and their initialization.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Chemoradiotherapy/methods , Diffusion , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Glioblastoma/surgery , Humans , Magnetic Resonance Imaging
18.
J Neurotrauma ; 39(19-20): 1429-1441, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35593008

ABSTRACT

Severe traumatic brain injury (TBI) results in cognitive dysfunction in part due to vascular perturbations. In contrast, the long-term vasculo-cognitive pathophysiology of mild TBI (mTBI) remains unknown. We evaluated mTBI effects on chronic cognitive and cerebrovascular function and assessed their interrelationships. Sprague-Dawley rats received midline fluid percussion injury (n = 20) or sham (n = 21). Cognitive function was assessed (3- and 6-month novel object recognition [NOR], novel object location [NOL], and temporal order object recognition [TOR]). Six-month cerebral blood flow (CBF) and cerebral blood volume (CBV) using contrast magnetic resonance imaging (MRI) and ex vivo circle of Willis artery endothelial and smooth muscle-dependent function were measured. mTBI rats showed significantly impaired NOR, with similar trends (non-significant) in NOL/TOR. Regional CBF and CBV were similar in sham and mTBI. NOR correlated with CBF in lateral hippocampus, medial hippocampus, and primary somatosensory barrel cortex, whereas it inversely correlated with arterial smooth muscle-dependent dilation. Six-month baseline endothelial and smooth muscle-dependent arterial function were similar among mTBI and sham, but post-angiotensin 2 stimulation, mTBI showed no change in smooth muscle-dependent dilation from baseline response, unlike the reduction in sham. mTBI led to chronic cognitive dysfunction and altered angiotensin 2-stimulated smooth muscle-dependent vasoreactivity. The findings of persistent pathophysiological consequences of mTBI in this animal model add to the broader understanding of chronic pathophysiological sequelae in human mild TBI.


Subject(s)
Brain Concussion , Cerebrovascular Circulation , Cognition , Animals , Humans , Rats , Angiotensins , Brain Concussion/complications , Brain Concussion/pathology , Rats, Sprague-Dawley
19.
Front Oncol ; 12: 829050, 2022.
Article in English | MEDLINE | ID: mdl-35174096

ABSTRACT

INTRODUCTION: Conventional methods of imaging brain tumors fail to assess metabolically active tumor regions, which limits their capabilities for tumor detection, localization, and response assessment. Positron emission tomography (PET) with 18F-fluciclovine (fluciclovine) provides regional assessment of amino acid uptake in tumors that could overcome some of the limitations of conventional imaging. However, the biological basis of enhanced fluciclovine uptake is insufficiently characterized in brain tumors, which confounds clinical interpretation and application. This study sought to address this gap by correlating multiple biologic quantities with fluciclovine PET uptake across a range of human glioblastoma xenograft models. METHODS: Thirty-one rats underwent orthotopic implantations with one of five different human glioblastoma cell lines. After tumors were established, fluciclovine PET and magnetic resonance imaging (MRI) scans were performed. The fluciclovine tumor-to-normal-brain (TN) uptake ratio was used to quantify fluciclovine uptake. MRI scans were used to assess tumor volume and gadolinium enhancement status. Histologic assessments quantified tumor cell proliferation, tumor cell density, and tumor cell amino acid transporters (LAT1 and ASCT2). Multivariate linear regression models related fluciclovine uptake with the other measured quantities. RESULTS: Within the multivariate regression, the fluciclovine TN uptake ratio (measured 15 to 35 minutes after fluciclovine injection) was most strongly associated with tumor ASCT2 levels (ß=0.64; P=0.001). The fluciclovine TN uptake ratio was also significantly associated with tumor volume (ß=0.45; P=0.001) and tumor enhancement status (ß=0.40; P=0.01). Tumor cell proliferation, tumor cell density, and LAT1 levels were not significantly associated with fluciclovine uptake in any of the multivariate models. In general, both enhancing and non-enhancing tumors could be visualized on fluciclovine PET images, with the median TN uptake ratio across the five tumor lines being 2.4 (range 1.1 to 8.9). CONCLUSIONS: Increased fluciclovine PET uptake was associated with increased levels of the amino acid transporter ASCT2, suggesting fluciclovine PET may be useful for assessing brain tumor amino acid metabolism. Fluciclovine PET uptake was elevated in both enhancing and non-enhancing tumors but the degree of uptake was greater in larger tumors and tumors with enhancement, indicating these variables could confound fluciclovine metabolic measurements if not accounted for.

20.
Front Radiol ; 2: 809373, 2022.
Article in English | MEDLINE | ID: mdl-37492687

ABSTRACT

In the follow-up treatment of high-grade gliomas (HGGs), differentiating true tumor progression from treatment-related effects, such as pseudoprogression and radiation necrosis, presents an ongoing clinical challenge. Conventional MRI with and without intravenous contrast serves as the clinical benchmark for the posttreatment surveillance imaging of HGG. However, many advanced imaging techniques have shown promise in helping better delineate the findings in indeterminate scenarios, as posttreatment effects can often mimic true tumor progression on conventional imaging. These challenges are further confounded by the histologic admixture that can commonly occur between tumor growth and treatment-related effects within the posttreatment bed. This review discusses the current practices in the surveillance imaging of HGG and the role of advanced imaging techniques, including perfusion MRI and metabolic MRI.

SELECTION OF CITATIONS
SEARCH DETAIL
...