Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Front Cell Infect Microbiol ; 12: 886728, 2022.
Article in English | MEDLINE | ID: mdl-36061874

ABSTRACT

Plasmodium falciparum malaria is still an important disease in sub-Saharan Africa (sSA). Great strides have been made in its control spear-headed by artemisinin (ART)-based combination therapies (ACTs). However, concerns about the imminent spread of ART-resistant (ARTr) malaria parasites to sSA threaten gains already made. Attempts to mitigate this risk have highlighted the need to discover novel P. falciparum drug targets. Therefore, studies to deepen our understanding of the biology of P. falciparum are needed. The role of extracellular vesicles (EVs) in the biology of malaria parasites is not fully understood. Recently, the ART resistance-associated transcriptional profile has been reported to involve several biological processes connected to vesicular trafficking, proteotoxic stress, erythrocyte remodelling, and mitochondrial metabolism. We explored a role for EVs in developing the P. falciparum ARTr phenotype using bulk RNA sequencing of unsynchronized parasite cultures under untreated, 0.1% dimethyl sulfoxide and 700nM dihydroartemisinin treated conditions for six hours. As pathway and gene ontology analysis is limited in its curated knowledge repertoire on EVs biogenesis in P. falciparum, we used a modular (gene set) analysis approach to explore whether an EVs biogenesis module is associated with the ARTr phenotype in P. falciparum. We first generated well-defined EVs modules of interest and used statistical tools to determine differences in their expression among the parasite and treatment conditions. Then we used gene set enrichment analysis to determine the strength of the association between each EVs module of interest and the ARTr phenotype. This transcriptome-module phenotype association study (TMPAS) represents a well-powered approach to making meaningful discoveries out of bulk gene expression data. We identified four EVs module of interest and report that one module representing gene sets with correlated expression to PF3D7_1441800 - involved with EVs biogenesis in P. falciparum - is associated with the ARTr phenotype (R539T_DHA_treated versus R539T_untreated: normalized enrichment score (NES) = 1.1830174, FDR q-value < 0.25; C580R_DHA_treated versus C580R_untreated: NES = 1.2457103, FDR q-value < 0.25). PF3D7_1441800 has been reported to reduce EVs production when knocked out in P. falciparum. Altogether, our findings suggest a role for EVs in developing ART resistance and warrant further studies interrogating this association.


Subject(s)
Antimalarials , Artemisinins , Biological Phenomena , Extracellular Vesicles , Malaria, Falciparum , Antimalarials/pharmacology , Artemisinins/pharmacology , Humans , Malaria, Falciparum/parasitology , Phenotype , Plasmodium falciparum/genetics , Transcriptome
2.
Trends Parasitol ; 38(8): 614-617, 2022 08.
Article in English | MEDLINE | ID: mdl-35661626

ABSTRACT

Plasmodium falciparum causes malaria, and its resistance to artemisinin (ART) - a drug used for managing malaria - threatens to interfere with the effective control of malaria. ART resistance (ARTr) is driven by increased tolerance to oxidative stress and reduced haemoglobin trafficking to the food vacuole. We discuss how extracellular vesicles (EVs) may play a role in developing ARTr.


Subject(s)
Antimalarials , Artemisinins , Extracellular Vesicles , Malaria, Falciparum , Malaria , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Resistance , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Plasmodium falciparum
3.
Mol Microbiol ; 116(6): 1489-1511, 2021 12.
Article in English | MEDLINE | ID: mdl-34738285

ABSTRACT

Trichomoniasis is a common and widespread sexually-transmitted infection, caused by the protozoan parasite Trichomonas vaginalis. T. vaginalis lacks the biosynthetic pathways for purines and pyrimidines, making nucleoside metabolism a drug target. Here we report the first comprehensive investigation into purine and pyrimidine uptake by T. vaginalis. Multiple carriers were identified and characterized with regard to substrate selectivity and affinity. For nucleobases, a high-affinity adenine transporter, a possible guanine transporter and a low affinity uracil transporter were found. Nucleoside transporters included two high affinity adenosine/guanosine/uridine/cytidine transporters distinguished by different affinities to inosine, a lower affinity adenosine transporter, and a thymidine transporter. Nine Equilibrative Nucleoside Transporter (ENT) genes were identified in the T. vaginalis genome. All were expressed equally in metronidazole-resistant and -sensitive strains. Only TvagENT2 was significantly upregulated in the presence of extracellular purines; expression was not affected by co-culture with human cervical epithelial cells. All TvagENTs were cloned and separately expressed in Trypanosoma brucei. We identified the main broad specificity nucleoside carrier, with high affinity for uridine and cytidine as well as purine nucleosides including inosine, as TvagENT3. The in-depth characterization of purine and pyrimidine transporters provides a critical foundation for the development of new anti-trichomonal nucleoside analogues.


Subject(s)
Nucleoside Transport Proteins/metabolism , Protozoan Proteins/metabolism , Purines/metabolism , Pyrimidines/metabolism , Trichomonas Infections/parasitology , Trichomonas vaginalis/metabolism , Biological Transport , Cloning, Molecular , Humans , Kinetics , Nucleoside Transport Proteins/chemistry , Nucleoside Transport Proteins/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Trichomonas vaginalis/chemistry , Trichomonas vaginalis/genetics
4.
Traffic ; 22(6): 194-200, 2021 06.
Article in English | MEDLINE | ID: mdl-33860593

ABSTRACT

Plasmodium falciparum malaria remains a disease of significant public health impact today. With the risk of emerging artemisinin resistance stalling malaria control efforts, the need to deepen our understanding of the parasite's biology is dire. Extracellular vesicles (EVs) are vital to the biology of P. falciparum and play a role in the pathogenesis of malaria. Recent studies have also shown that EVs may play a role in the development of artemisinin resistance in P. falciparum. Here, we highlight evidence on EVs in P. falciparum biology and malaria pathogenesis and argue that there is sufficient ground to propose a role for EVs in the development of P. falciparum artemisinin resistance. We suggest that EVs are actively secreted functional organelles that contribute to cellular homeostasis in P. falciparum-infected red blood cells under artemisinin pressure. Further exploration of this hypothesized EVs-based molecular mechanism of artemisinin resistance will aid the discovery of novel antimalarial therapies.


Subject(s)
Antimalarials , Artemisinins , Extracellular Vesicles , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Humans , Malaria, Falciparum/drug therapy , Plasmodium falciparum
5.
Evol Bioinform Online ; 17: 1176934321999640, 2021.
Article in English | MEDLINE | ID: mdl-33746510

ABSTRACT

Sub-Saharan Africa is courting the risk of artemisinin resistance (ARTr) emerging in Plasmodium falciparum malaria parasites. Current molecular surveillance efforts for ARTr have been built on the utility of P. falciparum kelch13 (pfk13) validated molecular markers. However, whether these molecular markers will serve the purpose of early detection of artemisinin-resistant parasites in Ghana is hinged on a pfk13 dependent evolution. Here, we tested the hypothesis that the background pfk13 genome may be present before the pfk13 ARTr-conferring variant(s) is selected and that signatures of balancing selection on these genomic loci may serve as an early warning signal of ARTr. We analyzed 12 198 single nucleotide polymorphisms (SNPs) in Ghanaian clinical isolates in the Pf3K MalariaGEN dataset that passed a stringent filtering regimen. We identified signatures of balancing selection in 2 genes (phosphatidylinositol 4-kinase and chloroquine resistance transporter) previously reported as background loci for ARTr. These genes showed statistically significant and high positive values for Tajima's D, Fu and Li's F, and Fu and Li's D. This indicates that the biodiversity required to establish a pfk13 background genome may have been primed in clinical isolates of P. falciparum from Ghana as of 2010. Despite the absence of ARTr in Ghana to date, our finding supports the current use of pfk13 for molecular surveillance of ARTr in Ghana and highlights the potential utility of monitoring malaria parasite populations for balancing selection in ARTr precursor background genes as early warning molecular signatures for the emergence of ARTr.

6.
J Trop Pediatr ; 67(1)2021 01 29.
Article in English | MEDLINE | ID: mdl-33404643

ABSTRACT

Malaria in pregnancy is a huge public health problem as it is the cause of maternal anaemia, still birth, premature delivery, low birth weight among others. To tackle this problem, WHO recommended the administration, during pregnancy, of intermittent preventive treatment with sulphadoxine-pyrimethamine (IPTp-SP). The introduction of this policy is likely to create SP drug pressure which may lead to the emergence of parasite strains resistant to the drug. This study investigated the prevalence of the molecular markers of SP resistance as pointers to potential failure of IPTp-SP among pregnant women attending antenatal clinic, women at the point of baby delivery and out patients department (OPD) attendees. The study was conducted in health facilities located in parts of Ghana. Prevalence of mutations in dhfr and dhps genes of Plasmodium falciparum was determined using the method described by Duraisingh et al. The outcome of the study indicated the presence of high prevalence of strains of P.falciparum with the resistant alleles of the dhfr or dhps genes in the three categories of participants. There was a high prevalence of triple mutations (IRN) in the dhfr gene of P.falciparum isolates: 71.4% in peripheral blood of antenatal attendees; 74.1% in placenta cord blood of delivering mothers and 71.1% in OPD attendees. Quintuple mutations were only found in 2 (0.5%) isolates from OPD attendees. This observation might have occurred due to the increased use of SP for IPTp among others. There is the need for an interventional measure in order to protect pregnant women and their unborn children.Lay summaryWhen pregnant women get infected with the malaria parasites they are exposed to all manner of dangers including pre-term delivery, still birth, maternal anaemia and low birth weight. Taking sulphadoxine-pyrimethamine (SP) at predetermined periods during pregnancy, referred to as 'intermittent preventive treatment with SP' (IPTp-SP)' helps to curtail these problems. However, the frequent taking of these drugs is likely to create SP drug pressure which may lead to the emergence of parasite strains that are not readily killed by the drugs. In order to ascertain this phenomenon and advice stakeholders, this study determined the prevalence of certain 'materials' certified as markers of parasite resistance to SP. Alarmingly, more than 5% of all the category of women recruited to participate in this study were found to harbour the parasites that causes malaria. The outcome, also suggest the existence of high levels of strains of the malaria parasite, carrying the materials that make them to become resistant to SP. Policy makers must pay attention to these observations and institute measures to avoid escalation of the situation.


Subject(s)
Antimalarials , Drug Resistance/genetics , Malaria, Falciparum , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Combinations , Female , Ghana/epidemiology , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Pregnancy , Prevalence , Pyrimethamine/pharmacology , Pyrimethamine/therapeutic use , Sulfadoxine/pharmacology , Sulfadoxine/therapeutic use
7.
Sci Rep ; 10(1): 10925, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616767

ABSTRACT

Human malaria parasites have complex but poorly understood population dynamics inside their human host. In some but not all infections, parasites progress synchronously through the 48 h lifecycle following erythrocyte invasion, such that at any one time there is a limited spread of parasites at a particular time (hours) post-invasion. Patients presenting with older parasites, and with asynchronous infections, have been reported to have higher risks of fatal outcomes, associated with higher parasite biomass and multiplication rates respectively. However, practical tools to assess synchrony and estimate parasite age post-invasion in patient samples are lacking. We have developed a novel method based on three genes differentially expressed over the parasite intra-erythrocytic lifecycle, and applied it to samples from patients with uncomplicated malaria attending two health clinics in Ghana. We found that most patients presented with synchronous infections, and with parasites within 12 h of erythrocyte invasion. Finally we investigated if clinical features such as fever and parasite density could act as predictors of parasite age and synchrony. The new method is a simple and practicable approach to study parasite dynamics in naturally-infected patients, and is a significant improvement on the subjective microscopical methods for parasite staging in vivo, aiding patient management.


Subject(s)
Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Aging , Animals , Ethnicity , Gene Expression Regulation, Developmental , Ghana , Humans , Life Cycle Stages , Models, Biological , Parasitemia/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/physiology
8.
Article in English | MEDLINE | ID: mdl-31427297

ABSTRACT

The continuous surveillance of polymorphisms in the kelch propeller domain of Plasmodium falciparum from Africa is important for the discovery of the actual markers of artemisinin resistance in the region. The information on the markers is crucial for control strategies involving chemotherapy and chemoprophylaxis for residents and nonimmune travelers to the country. Polymorphisms in the kelch propeller domain of Ghanaian malaria parasites from three different ecological zones at several time periods were assessed. A total of 854 archived samples (2007 to 2016) collected from uncomplicated malaria patients aged ≤9 years old from 10 sentinel sites were used. Eighty-four percent had wild-type sequences (PF3D7_1343700), while many of the mutants had mostly nonsynonymous mutations clustered around codons 404 to 650. Variants with different amino acid changes of the codons associated with artemisinin (ART) resistance validated markers were observed in Ghanaian isolates: frequencies for I543I, I543S, I543V, R561P, R561R, and C580V were 0.12% each and 0.6% for R539I. Mutations reported from African parasites, A578S (0.23%) and Q613L (0.23%), were also observed. Three persisting nonsynonymous (NS) mutations, N599Y (0.005%), K607E (0.004%), and V637G (0.004%), were observed in 3 of the 5 time periods nationally. The presence of variants of the validated markers of artemisinin resistance as well as persisting polymorphisms after 14 years of artemisinin-based combination therapy use argues for continuous surveillance of the markers. The molecular markers of artemisinin resistance and the observed variants will be monitored subsequently as part of ongoing surveillance of antimalarial drug efficacy/resistance studies in the country.


Subject(s)
Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide/genetics , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Child , Drug Resistance/genetics , Female , Genotype , Ghana , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/microbiology , Male , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Protozoan Proteins/genetics
9.
PLoS One ; 13(9): e0204871, 2018.
Article in English | MEDLINE | ID: mdl-30265714

ABSTRACT

Sulfadoxine-pyrimethamine (SP) is used as malaria chemoprophylaxis for pregnant women and children in Ghana. Plasmodium falciparum resistance to SP is linked to mutations in the dihydropteroate synthase gene (pfdhps), dihydrofolate reductase gene (pfdhfr) and amplification of GTP cyclohydrolase 1 (pfgch1) gene. The pfgch1 duplication is associated with pfdhfr L164, a crucial mutant for high level pyrimethamine resistance which is rare in Ghana. The presence of amplified pfgch1 in Ghanaian isolates could be an indicator of the evolution of the L164 mutant. This study therefore determined the pfgch1 copy number variations and SP resistance mutations in clinical isolates from Ghana. One hundred and ninety-two (192) blood samples collected from children aged ≤14 years with uncomplicated malaria in 2013-14 and 2015-16 were used. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the pfgch1 copy number and nested PCR-Sanger sequencing used to detect mutations in pfdhps and pfdhfr genes. Twelve parasites (6.3%) harbored double copies of the pfgch1 gene out of the 192 samples. Of the 12, 75% had the pfdhfr I51-R59-N108, 92% had the pfdhps G437 mutant, 8% had the pfdhps E540 and 67% had the SP resistance haplotype IRNG. No L164 was detected in samples with amplified pfgch1. The rare T108 mutant associated with cycloguanil resistance showed predominance (60%) over N108 in the 2015-16 isolates. The observation of parasites with increased copy number of pfgch1 gene is indicative of the future evolution of the rare quadruple pfdhfr mutant, I51-R59-N108-L164, in Ghanaian parasites. Mutant pfdhps isolates also had increased gch1 copy number suggestive that it may also facilitate sulphadoxine resistance. The selection of parasites with pfgch1 gene amplification will enhance the sustenance and persistence of parasites with SP resistance in the country. Policy makers need to begin the search for a replacement chemoprophylaxis drug for malaria vulnerable groups in Ghana.


Subject(s)
Dihydropteroate Synthase/genetics , Drug Resistance/genetics , GTP Cyclohydrolase/genetics , Mutation , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Tetrahydrofolate Dehydrogenase/genetics , Drug Combinations , Female , Ghana , Humans , Male , Plasmodium falciparum/enzymology , Polymerase Chain Reaction , Pyrimethamine , Sulfadoxine
10.
PLoS One ; 13(6): e0199172, 2018.
Article in English | MEDLINE | ID: mdl-29906275

ABSTRACT

Plasmodium falciparum infections presenting either as symptomatic or asymptomatic may contain sexual stage parasites (gametocytes) that are crucial to malaria transmission. In this study, the prevalence of microscopic and submicroscopic asexual and gametocyte parasite stages were assessed in asymptomatic children from two communities in southern Ghana. Eighty children aged twelve years and below, none of whom exhibited signs of clinical malaria living in Obom and Cape Coast were sampled twice, one during the rainy (July 2015) and subsequently during the dry (January 2016) season. Venous blood was used to prepare thick and thin blood smears, spot a rapid malaria diagnostic test (PfHRP2 RDT) as well as prepare filter paper blood spots. Blood cell pellets were preserved in Trizol for RNA extraction. Polymerase chain reaction (PCR) and semi-quantitative real time reverse transcriptase PCR (qRT-PCR) were used to determine submicroscopic parasite prevalence. In both sites 87% (95% CI: 78-96) of the asymptomatic individuals surveyed were parasites positive during the 6 month study period. The prevalence of asexual and gametocyte stage parasites in the rainy season were both significantly higher in Obom than in Cape Coast (P < 0.001). Submicroscopic gametocyte prevalence was highest in the rainy season in Obom but in the dry season in Cape Coast. Parasite prevalence determined by PCR was similar to that determined by qRT-PCR in Obom but significantly lower than that determined by qRT-PCR in Cape Coast. Communities with varying parasite prevalence exhibit seasonal variations in the prevalence of gametocyte carriers. Submicroscopic asymptomatic parasite and gametocyte carriage is very high in southern Ghana, even during the dry season in communities with low microscopic parasite prevalence and likely to be missed during national surveillance exercises.


Subject(s)
Asymptomatic Diseases/epidemiology , Malaria, Falciparum/epidemiology , Plasmodium falciparum/isolation & purification , Seasons , Animals , Child , Dried Blood Spot Testing , Ghana/epidemiology , Humans , Malaria, Falciparum/blood , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Microscopy , Plasmodium falciparum/genetics , Prevalence , RNA, Protozoan/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction
11.
Parasit Vectors ; 11(1): 175, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29530100

ABSTRACT

BACKGROUND: Plasmodium falciparum delayed clearance with the use of artemisinin-based combination therapy (ACTs) has been reported in some African countries. Single nucleotide polymorphisms (SNPs) in two genes, P. falciparum adaptor protein complex 2 mu subunit (pfap2mu) and ubiquitin specific protease 1 (pfubp1), have been linked to delayed clearance with ACT use in Kenya and recurrent imported malaria in Britain. With over 12 years of ACT use in Ghana, this study investigated the prevalence of SNPs in the pfap2mu and pfubp1 in Ghanaian clinical P. falciparum isolates to provide baseline data for antimalarial drug resistance surveillance in the country. METHODS: Filter paper blood blots collected in 2015-2016 from children aged below 9 years presenting with uncomplicated malaria at hospitals in three sentinel sites Begoro, Cape Coast and Navrongo were used. Parasite DNA was extracted from 120 samples followed by nested polymerase chain reaction (nPCR). Sanger sequencing was performed to detect and identify SNPs in pfap2mu and pfubp1 genes. RESULTS: In all, 11.1% (9/81) of the isolates carried the wildtype genotypes for both genes. A total of 164 pfap2mu mutations were detected in 67 isolates whilst 271 pfubp1 mutations were observed in 72 isolates. The majority of the mutations were non-synonymous (NS): 78% (128/164) for pfap2mu and 92.3% (250/271) for pfubp1. Five unique samples had a total of 215 pfap2mu SNPs, ranging between 15 and 63 SNPs per sample. Genotypes reportedly associated with ART resistance detected in this study included pfap2mu S160N (7.4%, 6/81) and pfubp1 E1528D (7.4%, 6/81) as well as D1525E (4.9%, 4/81). There was no significant difference in the prevalence of the SNPs between the three ecologically distinct study sites (pfap2mu: χ2 = 6.905, df = 2, P = 0.546; pfubp1: χ2 = 4.883, df = 2, P = 0.769). CONCLUSIONS: The detection of pfap2mu and pfubp1 genotypes associated with ACT delayed parasite clearance is evidence of gradual nascent emergence of resistance in Ghana. The results will serve as baseline data for surveillance and the selection of the genotypes with drug pressure over time. The pfap2mu S160N, pfubp1 E1528D and D1525E must be monitored in Ghanaian isolates in ACT susceptibility studies, especially when cure rates of ACTs, particularly AL, is less than 100%.


Subject(s)
Adaptor Protein Complex 2/genetics , Drug Resistance/genetics , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide/genetics , RNA-Binding Proteins/genetics , Ubiquitin-Specific Proteases/genetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/adverse effects , Artemisinins/therapeutic use , Child , Child, Preschool , Female , Genotype , Ghana/epidemiology , Humans , Infant , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Mutation , Plasmodium falciparum/isolation & purification , Prevalence
12.
J Infect Public Health ; 10(1): 110-119, 2017.
Article in English | MEDLINE | ID: mdl-27026134

ABSTRACT

Unlike other countries, the chloroquine resistant marker Pfcrt T76 mutant has remained fairly stable in Ghana several years after official disuse of chloroquine. Certain mutations in Pfmdr1 may potentiate Pfcrt T76, offering a possible explanation for this observation. To understand the phenomenon, the co-existence of mutations in Pfmdr1 with Pfcrt T76 in Ghanaian Plasmodium falciparum isolates was studied. The reported presence of parasites with reduced sensitivity to amodiaquine and quinine in the country was also studied. Blood samples collected from confirmed malaria patients presenting at health facilities in two distinct ecological zones were analyzed. The prevalence of Pfcrt K76T and the five point mutations in Pfmdr1 were determined using nested PCR followed by RFLP analysis. The association between genes was determined by chi square analysis, and synergism between the two genes was ascertained using the Jonckheere-Terptra (J-T) test followed by Monte Carlo simulation (MCS). Nearly fifty-four percent (53.7%) of the P. falciparum isolates examined had the Pfcrt T76 gene, out of which 18.3% had both K76 and T76 alleles. Mutations at codon 86, 184, 1034, 1042 and 1246 of the Pfmdr1 gene were detected in 36.0%, 87.9%, 71.0%, 91.6% and 8.4% of the isolates, respectively. The haplotypes of Pfmdr1 present were NFCDD (43.46%), YFCDD (27.57%), NFSDD (7.48%), NYSNY (5.14%) and YFSDD (4.67%). Pfcrt T76 was significantly associated with a double mutation at codon 86 and 184 of Pfmdr1 (YF; χ2=18.045, p=0.006). Associations were observed between Pfcrt K76T and Pfmdr1 triple mutation at codons 86, 184 and 1034 (NFC; χ2=13.770, p=0.032 and YFC; χ2=16.489, p=0.011). The J-T test showed significant synergism between Pfcrt 76 and Pfmdr1 polymorphisms (p<0.0001), which was confirmed by MCS at 99% CI. Synergism between Pfcrt and Pfmdr1 mutant genes could account for the slow recovery of chloroquine sensitive P. falciparum in Ghana. The same phenomenon could explain resistance to amodiaquine and quinine. The outcomes of this study also indicated a possible emergence of artemether-lumefantrine resistance in Ghana.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Drug Resistance , Genomic Instability , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Cross-Sectional Studies , Gene Frequency , Ghana , Humans , Membrane Transport Proteins/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Mutation, Missense , Point Mutation , Protozoan Proteins/metabolism
13.
Parasit Vectors ; 9(1): 416, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27460474

ABSTRACT

BACKGROUND: Genotyping malaria parasites to assess their diversity in different geographic settings have become necessary for the selection of antigenic epitopes for vaccine development and for antimalarial drug efficacy or resistance investigations. This study describes the genetic diversity of Plasmodium falciparum isolates from uncomplicated malaria cases over a ten year period (2003-2013) in Ghana using the polymorphic antigenic marker, merozoite surface protein 2 (msp2). METHODS: Archived filter paper blood blots from children aged nine years and below with uncomplicated malaria collected from nine sites in Ghana were typed for the presence of the markers. A total of 880 samples were genotyped for msp2 for the two major allelic families, FC27 and 3D7, using nested polymerase chain reaction (PCR). The allele frequencies and the multiplicity of infection were determined for the nine sites for five time points over a period of ten years, 2003-2004, 2005-2006, 2007-2008, 2010 and 2012-2013 malaria transmission seasons. RESULTS: The number of different alleles detected for the msp2 gene by resolving PCR products on agarose gels was 14. Both of the major allelic families, 3D7 and FC27 were common in all population samples. The highest multiplicity of infection (MOI) was observed in isolates from Begoro (forest zone, rural site): 3.31 for the time point 2007-2008. A significant variation was observed among the sites in the MOIs detected per infection (Fisher's exact test, P < 0.001) for the 2007 isolates and also at each of the three sites with data for three different years, Hohoe, P = 0.03; Navrongo, P < 0.001; Cape Coast, P < 0.001. Overall, there was no significant difference between the MOIs of the three ecological zones over the years (P = 0.37) and between the time points when data from all sites were pooled (P = 0.40). CONCLUSIONS: The diversity and variation between isolates detected using the msp2 gene in Ghanaian isolates were observed to be profound; however, there was homogeneity throughout the three ecological zones studied. This is indicative of gene flow between the parasite populations across the country probably due to human population movements (HPM).


Subject(s)
Antigens, Protozoan/genetics , Genetic Variation , Malaria, Falciparum/parasitology , Plasmodium falciparum/classification , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Child , Child, Preschool , Female , Gene Frequency , Genotyping Techniques , Ghana , Humans , Infant , Infant, Newborn , Male , Plasmodium falciparum/isolation & purification , Polymerase Chain Reaction
14.
Hemoglobin ; 40(1): 32-7, 2016.
Article in English | MEDLINE | ID: mdl-26575356

ABSTRACT

Thalassemia and sickle cell disease constitute the most monogenic hemoglobin (Hb) disorders worldwide. Clinical symptoms of α(+)-thalassemia (α(+)-thal) are related to inadequate Hb production and accumulation of ß- and/or γ-globin subunits. The association of thalassemia with malaria remains contentious, though from its distribution it appears to have offered some protection against the disease. Data on the prevalence of thalassemia in Ghana and its link with malaria is scanty and restricted. It was an objective of this cross-sectional study to determine the prevalence of thalassemia in areas representing two of Ghana's distinct ecological zones. The relationship between thalassemia and Plasmodium falciparium (P. falciparum) infection was also ascertained. Overall, 277 patients presenting to health facilities in the study areas were recruited to participate. Tests were carried out to determine the presence of α(+)-thal, sickle cell and malaria parasites in the blood samples of participants. The outcome of this study showed an α(+)-thal frequency of 19.9% for heterozygotes (-α/αα) and 6.8% for homozygotes (-α/-α). Plasmodium falciparum was detected in 17.7% of the overall study population and 14.9% in those with α(+)-thal. No association was observed between those with α(+)-thal and the study sites (p > 0.05). A test of the Hardy-Weinberg law yielded no significant difference (p < 0.001). Findings from this study suggest a modest distribution of α(+)-thal in Ghana with no bias to the ecological zones. Although the prevalence and parasite density were relatively low in those with the disorder, no association was found between them.


Subject(s)
Malaria, Falciparum/epidemiology , Plasmodium falciparum/isolation & purification , alpha-Thalassemia/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Female , Ghana/epidemiology , Heterozygote , Homozygote , Humans , Infant , Malaria, Falciparum/complications , Male , Middle Aged , Prevalence , Young Adult , alpha-Globins/genetics , alpha-Thalassemia/complications , alpha-Thalassemia/genetics , alpha-Thalassemia/parasitology
15.
Malar J ; 14: 481, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26625907

ABSTRACT

BACKGROUND: The recently introduced SYBR Green1 (SG) assay for testing parasites susceptibility to anti-malarial drugs needs further improvement. This has been necessitated by various setbacks, the major one being the low fluorescence intensity associated with it use. This shortcoming diminishes the anticipated hope that this novel method was going to replace the more traditional ones, such as the isotopic and microscopy. In order to restore confidence in its use, series of experiments to determine conditions that give the best fluorescence intensity were conducted. METHODS: Conditions that yield the maximum fluorescent signal were ascertained by measuring the fluorescence after incubation of Plasmodium falciparum culture at different parasites concentration with lysis buffer containing SYBR Green (LBS) at different time period. In order to ascertain the effect of freeze-thaw on fluorescence intensity, P. falciparum culture was frozen for 1 h, thawed, incubated with LBS and the fluorescence measured. The optimized conditions determined in this study were then used to assess the susceptibility of clinical isolates of P. falciparum to artesunate, chloroquine and mefloquine. The concentration of anti-malarial drug inhibiting parasite growth by 50 % (IC50) for each drug was estimated using the online ICEstimator. The IC50 generated using the optimized SG method determined in this study was compared with that obtained using microscopic method and the previously reported standard SG method. RESULTS: Over all, the SG method was found to be easy to perform and sensitive. Freeze-thaw of parasite culture followed by incubation with lysis buffer containing the dye for 3 h was consistently observed to give the highest fluorescence signal. The IC50 values for chloroquine, mefloquine and artesunate determined were consistent and comparable with that determined with the previously reported standard SG method and the microscopic method. CONCLUSION: The authors conclude that freezing and thawing of parasite culture, followed by incubation with LBS in the dark for 3 h provided a significant improvement in fluorescence signal. The IC50 generated using the improved SG method is comparable with that from microscopy and the standard method.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Fluorometry/methods , Organic Chemicals/metabolism , Parasitic Sensitivity Tests/methods , Plasmodium falciparum/drug effects , Staining and Labeling/methods , Artemisinins/pharmacology , Artesunate , Benzothiazoles , Child , Child, Preschool , Chloroquine/pharmacology , Diamines , Humans , Inhibitory Concentration 50 , Mefloquine/pharmacology , Plasmodium falciparum/genetics , Quinolines
16.
Biomed J ; 38(2): 125-30, 2015.
Article in English | MEDLINE | ID: mdl-25179694

ABSTRACT

BACKGROUND: National Agency for Food and Drugs Administration and Control (NAFDAC), which is responsible for pharmacovigilance activity in Nigeria, recently withdrew injection gentamicin 280 mg, used in the management of life-threatening and multidrug-resistant infections from circulation, due to reported toxicity. Thus, this study aimed to investigate the toxicity profile of the commonly used strengths (80 mg and 280 mg) of gentamicin on kidney using animal models. METHODS: Animals were divided into five groups of 16 rats each. For rats of groups 1 and 2, gentamicin (1.14 mg/kg each group) was administered intramuscularly twice daily for 7 and 14 days, respectively, after which eight of them were sacrificed by cervical dislocation. Blood was collected via cardiac puncture and the kidneys were carefully removed and weighed immediately. The remaining eight animals were kept for reversibility study for another 7 and 14 days, respectively. For groups 3 and 4, gentamicin (4 mg/kg each group) was administered as a single daily dose for 7 and 14 days, respectively, and eight animals from the groups were subjected to reversibility study for 7 and 14 days, respectively. Group 5, the control group animals, were given 10 ml/kg distilled water for 14 days. Histopathology of the kidneys, serum creatinine levels, and antioxidant enzyme activities were investigated. RESULTS: Significant increase (p ≤ 0.001) in the level of creatinine of rats administered 4.0 mg/kg for 14 days was observed compared with all other groups. Significant (p ≤ 0.001) elevations in the lipid peroxidation in all gentamicin-administered animals and acute tubular necrosis in most of the gentamicin-administered animals were observed. CONCLUSION: Toxicity profile of gentamicin on the kidneys is dependent on both dose and duration of administration. The findings justify the decision made by NAFDAC to ban the use of high-dose inj. gentamicin 280 mg in Nigeria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/therapeutic use , Gentamicins/pharmacology , Kidney/drug effects , Pharmacovigilance , Animals , Creatinine/metabolism , Lipid Peroxidation/drug effects , Lipid Peroxidation/physiology , Rats
17.
Mol Pharmacol ; 87(3): 451-64, 2015.
Article in English | MEDLINE | ID: mdl-25527638

ABSTRACT

We have previously reported that curcumin analogs with a C7 linker bearing a C4-C5 olefinic linker with a single keto group at C3 (enone linker) display midnanomolar activity against the bloodstream form of Trypanosoma brucei. However, no clear indication of their mechanism of action or superior antiparasitic activity relative to analogs with the original di-ketone curcumin linker was apparent. To further investigate their utility as antiparasitic agents, we compare the cellular effects of curcumin and the enone linker lead compound 1,7-bis(4-hydroxy-3-methoxyphenyl)hept-4-en-3-one (AS-HK014) here. An AS-HK014-resitant line, trypanosomes adapted to AS-HK014 (TA014), was developed by in vitro exposure to the drug. Metabolomic analysis revealed that exposure to AS-HK014, but not curcumin, rapidly depleted glutathione and trypanothione in the wild-type line, although almost all other metabolites were unchanged relative to control. In TA014 cells, thiol levels were similar to untreated wild-type cells and not significantly depleted by AS-HK014. Adducts of AS-HK014 with both glutathione and trypanothione were identified in AS-HK014-exposed wild-type cells and reproduced by chemical reaction. However, adduct accumulation in sensitive cells was much lower than in resistant cells. TA014 cells did not exhibit any changes in sequence or protein levels of glutathione synthetase and γ-glutamylcysteine synthetase relative to wild-type cells. We conclude that monoenone curcuminoids have a different mode of action than curcumin, rapidly and specifically depleting thiol levels in trypanosomes by forming an adduct. This adduct may ultimately be responsible for the highly potent trypanocidal and antiparasitic activity of the monoenone curcuminoids.


Subject(s)
Curcumin/analogs & derivatives , Curcumin/metabolism , Glutathione/analogs & derivatives , Spermidine/analogs & derivatives , Trypanocidal Agents/metabolism , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/metabolism , Cell Survival/drug effects , Cell Survival/physiology , Curcumin/pharmacology , Glutathione/metabolism , Humans , Spermidine/metabolism , Trypanocidal Agents/pharmacology
18.
Malar J ; 13: 246, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24969960

ABSTRACT

BACKGROUND: After years of disuse of chloroquine (CQ) as first-line anti-malarial drug in Ghana, reports from molecular studies conducted in parts of the country indicate varying prevalence of T76 mutation in the pfcrt gene. This situation has several health implications, one being that mutations that confer resistance to CQ have been reported to show substantial cross-resistance to other anti-malarial drugs. It is important to identify some of the factors contributing to the continuous presence of CQ resistance markers in the country. This study determined the prevalence of T76 mutation in pfcrt gene of Plasmodium falciparum isolates collected from selected areas of the Central region of Ghana and correlated with the level of CQ use in these areas. METHODS: Plasmodium falciparum DNA was extracted from collected blood-blot filter paper samples in the study sites. The prevalence of T76 point mutation in pfcrt gene was assessed using nested PCR followed by RFLP. CQ from pharmacy and chemical shops was obtained using mystery buying method. The extent of CQ use by the participants was determined by measuring the level of the drug in their urine samples using the Saker-Solomon method. RESULTS: Of the 214 P. falciparum isolates analysed, 71.9% were found to have T76 mutation of pfcrt gene. The study revealed that 14.49% of community pharmacies and chemical shops had stocks of CQ for sale while 16.9% of the participants had CQ in their urine samples. There is five times more risks of becoming infected with CQ resistant strain for staying in an area where CQ is stocked for sale [RR = 0.20, p < 0.0001] and thirteen times more risks of having CQ-resistant mutant from those who still use CQ than non-users [OR = 0.08, p < 0.0001]. CONCLUSION: This study has shown that high variation in the prevalence of T76 mutations of P. falciparum is linked with the level of CQ stocking and usage within study area.


Subject(s)
Antimalarials/therapeutic use , Chloroquine/therapeutic use , Drug Resistance , Membrane Transport Proteins/genetics , Mutation , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , DNA, Protozoan/genetics , Drug Utilization/statistics & numerical data , Female , Gene Frequency , Ghana , Humans , Infant , Male , Middle Aged , Plasmodium falciparum/genetics , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Risk Assessment , Young Adult
19.
Malar J ; 12: 450, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24341604

ABSTRACT

BACKGROUND: Based on report of declining efficacy of chloroquine, Ghana shifted to the use of artemisinin-based combination therapy (ACT) in 2005 as the first-line anti-malarial drug. Since then, there has not been any major evaluation of the efficacy of anti-malarial drugs in Ghana in vitro. The sensitivity of Ghanaian Plasmodium falciparum isolates to anti-malarial drugs was, therefore, assessed and the data compared with that obtained prior to the change in the malaria treatment policy. METHODS: A SYBR Green 1 fluorescent-based in vitro drug sensitivity assay was used to assess the susceptibility of clinical isolates of P. falciparum to a panel of 12 anti-malarial drugs in three distinct eco-epidemiological zones in Ghana. The isolates were obtained from children visiting health facilities in sentinel sites located in Hohoe, Navrongo and Cape Coast municipalities. The concentration of anti-malarial drug inhibiting parasite growth by 50% (IC50) for each drug was estimated using the online program, ICEstimator. RESULTS: Pooled results from all the sentinel sites indicated geometric mean IC50 values of 1.60, 3.80, 4.00, 4.56, 5.20, 6.11, 10.12, 28.32, 31.56, 93.60, 107.20, and 8952.50 nM for atovaquone, artesunate, dihydroartemisin, artemether, lumefantrine, amodiaquine, mefloquine, piperaquine, chloroquine, tafenoquine, quinine, and doxycycline, respectively. With reference to the literature threshold value indicative of resistance, the parasites showed resistance to all the test drugs except the artemisinin derivatives, atovaquone and to a lesser extent, lumefantrine. There was nearly a two-fold decrease in the IC50 value determined for chloroquine in this study compared to that determined in 2004 (57.56 nM). This observation is important, since it suggests a significant improvement in the efficacy of chloroquine, probably as a direct consequence of reduced drug pressure after cessation of its use. Compared to that measured prior to the change in treatment policy, significant elevation of artesunate IC50 value was observed. The results also suggest the existence of possible cross-resistance among some of the test drugs. CONCLUSION: Ghanaian P. falciparum isolates, to some extent, have become susceptible to chloroquine in vitro, however the increasing trend in artesunate IC50 value observed should be of concern. Continuous monitoring of ACT in Ghana is recommended.


Subject(s)
Antimalarials/pharmacology , Malaria, Falciparum/parasitology , Organic Chemicals/chemistry , Plasmodium falciparum/drug effects , Benzothiazoles , Child , Child, Preschool , Chloroquine/pharmacology , Diamines , Drug Resistance , Ghana , Humans , Infant , Inhibitory Concentration 50 , Quinolines
20.
Malar J ; 12: 377, 2013 Oct 30.
Article in English | MEDLINE | ID: mdl-24172030

ABSTRACT

BACKGROUND: With the introduction of artemisinin-based combination therapy (ACT) in 2005, monitoring of anti-malarial drug efficacy, which includes the use of molecular tools to detect known genetic markers of parasite resistance, is important for first-hand information on the changes in parasite susceptibility to drugs in Ghana. This study investigated the Plasmodium falciparum multidrug resistance gene (pfmdr1) copy number, mutations and the chloroquine resistance transporter gene (pfcrt) mutations in Ghanaian isolates collected in seven years to detect the trends in prevalence of mutations. METHODS: Archived filter paper blood blots collected from children aged below five years with uncomplicated malaria in 2003-2010 at sentinel sites were used. Using quantitative real-time polymerase chain reaction (qRT-PCR), 756 samples were assessed for pfmdr1 gene copy number. PCR and restriction fragment length polymorphism (RFLP) were used to detect alleles of pfmdr1 86 in 1,102 samples, pfmdr1 184, 1034, 1042 and 1246 in 832 samples and pfcrt 76 in 1,063 samples. Merozoite surface protein 2 (msp2) genotyping was done to select monoclonal infections for copy number analysis. RESULTS: The percentage of isolates with increased pfmdr1 copy number were 4, 27, 9, and 18% for 2003-04, 2005-06, 2007-08 and 2010, respectively. Significant increasing trends for prevalence of pfmdr1 N86 (×(2) = 96.31, p <0.001) and pfcrt K76 (×(2) = 64.50, p <0.001) and decreasing trends in pfmdr1 Y86 (x(2) = 38.52, p <0.001) and pfcrt T76 (x(2) = 43.49, p <0.001) were observed from 2003-2010. The pfmdr1 F184 and Y184 prevalence showed an increasing and decreasing trends respectively but were not significant (×(2) = 7.39,p=0.060; ×(2) = 7.49, p = 0.057 respectively). The pfmdr1 N86-F184-D1246 haplotype, which is alleged to be selected by artemether-lumefantrine showed a significant increasing trend (×(2) = 20.75, p < 0.001). CONCLUSION: Increased pfmdr1 gene copy number was observed in the isolates analysed and this finding has implications for the use of ACT in the country although no resistance has been reported. The decreasing trend in the prevalence of chloroquine resistance markers after change of treatment policy presents the possibility for future introduction of chloroquine as prophylaxis for malaria risk groups such as children and pregnant women in Ghana.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Malaria, Falciparum/parasitology , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Antimalarials/therapeutic use , Child, Preschool , DNA, Protozoan/genetics , Female , Gene Dosage , Gene Frequency , Ghana/epidemiology , Health Policy , Humans , Infant , Malaria, Falciparum/epidemiology , Male , Mutation, Missense , Plasmodium falciparum/classification , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Polymorphism, Restriction Fragment Length , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...