Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791395

ABSTRACT

In cervical biopsies, for diagnosis of Human Papilloma Virus (HPV) related conditions, the immunohistochemical staining for p16 has a diagnostic value only if diffusely and strongly positive, pattern named "block-like". "Weak and/or focal (w/f) p16 expression" is commonly considered nonspecific. In our previous study, we demonstrated the presence of high-risk HPV (hrHPV) DNA by LiPa method in biopsies showing w/f p16 positivity. The aim of the present study was to investigate the presence of hrHPV-DNA by CISH in the areas showing w/f p16 expression. We assessed the presence of hrHPV16, 18, 31, 33, 51 by CISH in a group of 20 cervical biopsies showing w/f p16 expression, some with increased Ki67, and in 10 cases of block-like expression, employed as control. The immunohistochemical p16 expression was also assessed by digital pathology. hrHPV-CISH nuclear positivity was encountered in 12/20 cases of w/f p16 expression (60%). Different patterns of nuclear positivity were identified, classified as punctate, diffuse and mixed, with different epithelial distributions. Our results, albeit in a limited casuistry, show the presence of HPV in an integrated status highlighted by CISH in w/f p16 positive cases. This could suggest the necessity of a careful follow-up of the patients with "weak" and/or "focal" immunohistochemical patterns of p16, mainly in cases of increased Ki67 cell proliferation index, supplemented with molecular biology examinations.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16 , Immunohistochemistry , Papillomavirus Infections , Humans , Female , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Immunohistochemistry/methods , Papillomavirus Infections/virology , Papillomavirus Infections/diagnosis , Papillomavirus Infections/metabolism , Biopsy , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Papillomaviridae/genetics , Papillomaviridae/isolation & purification , Cervix Uteri/virology , Cervix Uteri/pathology , Cervix Uteri/metabolism , DNA, Viral/genetics , DNA, Viral/analysis , Adult , Ki-67 Antigen/metabolism , Middle Aged
2.
Biomedicines ; 12(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38398042

ABSTRACT

(1) Background: Nonalcoholic Steatohepatitis/Nonalcoholic Fatty Liver Disease (NASH/NAFLD) is the most recurrent chronic liver disease. NASH could present with a cholestatic (C) or hepatic (H) pattern of damage. Recently, we observed that increased Epithelial Cell Adhesion Molecule (EpCAM) expression was the main immunohistochemical feature to distinguish C from H pattern in NASH. (2) Methods: In the present study, we used digital pathology to compare the quantitative results of digital image analysis by QuPath software (Q-results), with the semi-quantitative results of observer assessment (S-results) for cytokeratin 7 and 19, (CK7, CK19) as well as EpCAM expression. Patients were classified into H or C group on the basis of the ratio between alanine transaminase (ALT) and alkaline phosphatase (ALP) values, using the "R-ratio formula". (3) Results: Q- and S-results showed a significant correlation for all markers (p < 0.05). Q-EpCAM expression was significantly higher in the C group than in the H group (p < 0.05). Importantly ALP, an indicator of hepatobiliary disorder, was the only biochemical parameter significantly correlated with Q-EpCAM. Instead, Q-CK7, but not Q-CK19, correlated only with γGlutamyl-Transferase (γGT). Of note, Stage 4 fibrosis correlated with Q-EpCAM, Q-CK19, and ALP but not with γGT or ALT. Conclusions: Image analysis confirms the relation between cholestatic-like pattern, associated with a worse prognosis, with increased ALP values, EpCAM positive biliary metaplasia, and advanced fibrosis. These preliminary data could be useful for the implementation of AI algorithms for the assessment of cholestatic NASH.

3.
Mol Aspects Med ; 84: 101028, 2022 04.
Article in English | MEDLINE | ID: mdl-34649720

ABSTRACT

Thalassemias (α, ß, γ, δ, δß, and εγδß) are the most common genetic disorders worldwide and constitute a heterogeneous group of hereditary diseases characterized by the deficient synthesis of one or more hemoglobin (Hb) chain(s). This leads to the accumulation of unstable non-thalassemic Hb chains, which precipitate and cause intramedullary destruction of erythroid precursors and premature lysis of red blood cells (RBC) in the peripheral blood. Non-thalassemic Hbs display high oxygen affinity and no cooperativity. Thalassemias result from many different genetic and molecular defects leading to either severe or clinically silent hematologic phenotypes. Thalassemias α and ß are particularly diffused in the regions spanning from the Mediterranean basin through the Middle East, Indian subcontinent, Burma, Southeast Asia, Melanesia, and the Pacific Islands, whereas δß-thalassemia is prevalent in some Mediterranean regions including Italy, Greece, and Turkey. Although in the world thalassemia and malaria areas overlap apparently, the RBC protection against malaria parasites is openly debated. Here, we provide an overview of the historical, geographic, genetic, structural, and molecular pathophysiological aspects of thalassemias. Moreover, attention has been paid to molecular and epigenetic pathways regulating globin gene expression and globin switching. Challenges of conventional standard treatments, including RBC transfusions and iron chelation therapy, splenectomy and hematopoietic stem cell transplantation from normal donors are reported. Finally, the progress made by rapidly evolving fields of gene therapy and gene editing strategies, already in pre-clinical and clinical evaluation, and future challenges as novel curative treatments for thalassemia are discussed.


Subject(s)
Thalassemia , Hemoglobins/genetics , Humans , Phenotype , Thalassemia/genetics
5.
Sci Rep ; 9(1): 16379, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31704999

ABSTRACT

Ruxolitinib is a type I JAK inhibitor approved by FDA for targeted therapy of Philadelphia-negative myeloproliferative neoplasms (MPNs), all characterized by mutations activating the JAK2/STAT signaling pathway. Treatment with ruxolitinib improves constitutional symptoms and splenomegaly. However, patients can become resistant to treatment and chronic therapy has only a mild effect on molecular/pathologic remissions. Drugs interaction with plasma proteins, i.e. human serum albumin (HSA), is an important factor affecting the intensity and duration of their pharmacological actions. Here, the ruxolitinib recognition by the fatty acid binding sites (FAs) 1, 6, 7, and 9 of HSA has been investigated from the bioinformatics, biochemical and/or biological viewpoints. Docking simulations indicate that ruxolitinib binds to multiple sites of HSA. Ruxolitinib binds to the FA1 and FA7 sites of HSA with high affinity (Kr = 3.1 µM and 4.6 µM, respectively, at pH 7.3 and 37.0 °C). Moreover, HSA selectively blocks, in a dose dependent manner, the cytotoxic activity of ruxolitinib in JAK2V617F+ cellular models for MPN, in vitro. Furthermore this event is accompanied by changes in the cell cycle, p27Kip1 and cyclin D3 levels, and JAK/STAT signaling. Given the high plasma concentration of HSA, ruxolitinib trapping may be relevant in vivo.


Subject(s)
Enzyme Inhibitors/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , Pyrazoles/metabolism , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Amino Acid Substitution , Binding Sites , Cell Line , Computational Biology , Enzyme Inhibitors/pharmacology , Fatty Acids/chemistry , Fatty Acids/metabolism , Humans , In Vitro Techniques , Janus Kinase 2/antagonists & inhibitors , K562 Cells , Kinetics , Molecular Docking Simulation , Mutant Proteins/antagonists & inhibitors , Mutation, Missense , Myeloproliferative Disorders/blood , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Nitriles , Pyrazoles/pharmacology , Pyrimidines , Signal Transduction , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...