Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 34(43): 14475-83, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25339758

ABSTRACT

Thalamomuscular coherence in essential tremor (ET) has consistently been detected in numerous neurophysiological studies. Thereby, spatial properties of coherence indicate a differentiated, somatotopic organization; so far, however, little attention has been paid to temporal aspects of this interdependency. Further insight into the relationship between tremor onset and the onset of coherence could pave the way to more efficient deep brain stimulation (DBS) algorithms for tremor. We studied 10 severely affected ET patients (six females, four males) during surgery for DBS-electrode implantation and simultaneously recorded local field potentials (LFPs) and surface electromyographic signals (EMGs) from the extensor and flexor muscles of the contralateral forearm during its elevation. The temporal relationship between the onset of significant wavelet cross spectrum (WCS) and tremor onset was determined. Moreover, we examined the influence of electrode location within one recording depth on this latency and the coincidence of coherence and tremor for depths with strong overall coherence ("tremor clusters") and those without. Data analysis revealed tremor onset occurring 220 ± 460 ms before the start of significant LFP-EMG coherence. Furthermore, we could detect an anterolateral gradient of WCS onset within one recording depth. Finally, the coincidence of tremor and coherence was significantly higher in tremor clusters. We conclude that tremor onset precedes the beginning of coherence. Besides, within one recording depth there is a spread of the tremor signal. This reflects the importance of somatosensory feedback for ET and questions the suitability of thalamomuscular coherence as a biomarker for "closed-loop" DBS systems to prevent tremor emergence.


Subject(s)
Deep Brain Stimulation/methods , Essential Tremor/physiopathology , Essential Tremor/therapy , Monitoring, Intraoperative/methods , Muscle, Skeletal/physiology , Thalamus/physiology , Aged , Deep Brain Stimulation/instrumentation , Electrodes, Implanted , Essential Tremor/diagnosis , Female , Humans , Male , Middle Aged , Monitoring, Intraoperative/instrumentation
2.
J Neurol ; 261(2): 330-42, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24305993

ABSTRACT

Patients with Parkinson's disease (PD) and freezing of gait (FOG) (freezers) demonstrate high gait variability. The objective of this study was to determine whether freezers display a higher variability of upper limb movements and elucidate if these changes correlate with gait. We were the first group to compare directly objectively measured gait and upper limb movement variability of freezers between freezing episodes. Patients with objectively verified FOG (n = 11) and PD patients without FOG (non-freezers) (n = 11) in a non-randomized medication condition (OFF/ON) were analyzed. Uncued antiphasic finger tapping and forearm diadochokinetic movements were analyzed via three-dimensional ultrasound kinematic measurements. Gait variability of straight gait was assessed using ground reaction forces. Freezers had shorter stride length (p = 0.004) and higher stride length variability (p = 0.005) in the medication OFF condition. Movement variability was not different during finger tapping or diadochokinesia between the groups. There was a trend towards more freezing of the upper limb during finger tapping for the freezers (p = 0.07). Variability in stride length generation and stride timing was not associated with variability of upper limb movement in freezers. Our findings demonstrate that: (1) freezers have a higher spatial gait variability between freezing episodes; (2) freezing-like episodes of the upper limb occur in PD patients, and tend to be more pronounced among freezers than non-freezers for finger tapping; (3) spatial and temporal upper extremity variability is equally affected in freezers and non-freezers in an uncued task. Upper limb freezing is not correlated to lower limb freezing, implicating a different pathophysiology.


Subject(s)
Gait Disorders, Neurologic/physiopathology , Gait/physiology , Parkinson Disease/physiopathology , Upper Extremity/physiopathology , Aged , Antiparkinson Agents/therapeutic use , Data Interpretation, Statistical , Dyskinesias/etiology , Dyskinesias/physiopathology , Female , Gait Disorders, Neurologic/etiology , Humans , Levodopa/therapeutic use , Male , Middle Aged , Movement/physiology , Neurologic Examination , Parkinson Disease/complications , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...